
-4192 374 INTERACTIVE NETUdORKED MOVING PLATFOR LAN OSU
NAVAL POSTGRADUATE SCHOOL MONTEREY CA

OLIVER ET AL. FEB 98 UPS52-88-882 HIPR-ATEC-48-47

NCA_1UNCLASSIFIED F.'G 16/2 M"illllllllili

IIII
lllllllllollll
lllllllllllmll*mommmmmmsm

,NII

4..'

,. -,.,-.-li-i.i-.

.- 4 ' - ,, -.-,- . . , . .: . , . ,, .,, -.. i i. -., , . !. , ' - .. ' . . 1-, 1 ,.1, . .11 ,

CV)

NPS 2-88-O0

NAVAL POSIGRADUAJE SCHOOL
Monterey, California

0z

DTIC
APR2 11988

INTERACTIVE, NETWORKED, MOVING

PLATFORM SIMULATORS

- Michael R. Oliver
David J. Stahl, Jr.

Robert B. McGhee
Michael .J. Zvda

f(hriiarv 1988

Apprved for pubich relea.se; distribUtion unlimited

Prepared tor:

'ava1 Oceans Systerms Center
Y'fl Dieqjo, CA~ 9215?

-, 2 NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin Kneale T. Marshall
Superintendent Acting Provost

This work was supported by the U.S. Army Combat Developments Experimentation
Center, Fort Ord, California, the Naval Ocean Systems Center, San Diego and the Naval
Postgraduate School's Direct Funding Program. This work was generated from Michael
R. Oliver's and David J. Stahl, Jr.'s joint Masters Thesis.

Reproduction of all or part of this report is authorized.

This report was prepared by:

MICHAEL J. 2YbX
Associate Professor
of Computer Science

Reviewed by: Released by:

" VINCENT Y. LU A S EM E
0.Chairman Aci / of Wpiormat in and

Department of Computer Science / Po y Science

J *jK

-,.S

% REPORT DOCUMENTATION PAGE

I'a REPO, R, S-(-R- C. ass lb ' RESTR UT VE MARKINGS

2a S(" P -_C.As ca, 7 A. __cq 3).S TP,BuT,0% A AUIABiti-,' O REPORT

'b 71E&. AS~7 O'\~D\
.e. Unlimited

* . 4 PK'Y\ -%C 0', PRFOR QS'~S VONI'0R NG ODRGANiZATION REPORT NUMBER(S)

Sa NA" Q- 'RN' NC <RCA. ZAFin ST CE 5' 0. 'a NAME 0- M0ONiTOR!NQ ORGANIZAT1ON

(ifappcabe) US Army Combat Developments Experiment Cente
k e).I te.. Me 11 et Ih I Naval Ocean Svtaemd s Cete

6(C", C~drP 30 PCL,(Je,' o ADD RE SS 'Ci ty SaeadZP o

:id,JLIc School Ford ord, (A 93941
i Sail DIiego , CA

sla \A'. k...[3 C S' NC) 9 RUU.PEME%
' T 1,S-RIMENT D)ET CAlO% %UMBER

.5 ~ %m (intt aphcabae)

ZP jCI oI ______________t~ MIPR ATEC 48-47 and AT E9 49-87
oc clr 3 n~ 11 3e 10 SOIRCE Jm 1 JND,NG %iMBERS

PP06RAM PROJECT TASK W1ORK UNIT
Ft EMENr No NO NO cCCESSiON NO

* 'A

UNerLworked, Moving Platform Simulators

* I ! 1~~ 01 Oiver , David J. Stahl, Jr. , Robert B. Mchhee and Michael J. Zvda

3a -'P l:3Qb - ME COvERED 1.4 DA T o REPORT (Year. Month, Day) 5 PAGE COUNT

OM 0o February 1988 133

('IS'. C~OS8 5 ECTTERMS (Continue on, rev~erse if necessary and identify by block nu~mber)
__ CROUP S.B C, P-_P

J 9 .ABS;A(Conflnue or rc~erse if ne essa3ry and identify by block number)
P1' :'rv ioll re-'esIrch has produced a real1-t ime FOG-M mi ssi le flIight simulat ion using Defense

~pjiuAg5"nc1V digital terrain elevation data and a Silicon Graphics, Inc. IRIS 3120

* <0 o wr .It itii:n . This study is a continuation of that project with the goals of

.r pr-:iding mnre realistic targets and allowing viewing the terrain from inside several

*' ~ ''Vtpes of veh iclIes. In addition, the use of Ethernet network communications

'-i'ti ri ol- taking part in the simulat ion is use to create a missile/target

20 9T)'IJ 1. A4t .)C ARSRA 21 ABSTRACT SECUJRITY C.ASS.F'(ATION

- ~ ..SC.SS *V F ES.U A -1 L] J)T(USERS UNCLASS I FIED
a"AVE i'S'NS-i LA 22h TELEPHONE (include Area Code) 22(OFf CE SYMBOL

Mi (i ie 1 1 . vd 408-646-2305 1 52Zk

OD FORM 1473, -aN 1T i I oi riiy be .Aed until exhaustedl SECURITY C1ASSrIP(ATiON OF TH-IS PAGE
.'~P -iU ',are O*)fl

te
Q 1. S Go-se lt~ P-t- fi ce I5,, 11186-Go 243

-v -- f lip Ae

,.-.

Interactive, Networked, Moving Platform Simulators

Michael R. Oliver, David J. Stahl, Jr., Robert B. McGhee and Michael J. Zyda *

Naval Postgraduate School,

Code 52, Dert. of Computer Science,

Monterey, California 93943

ABS'RACT

Previous research has produced a real-time FOG-M missile flight simulation

using Defense Mapping Agency digital terrain elevation data and a Silicon Graphics,

Inc. IRIS 3120 gra)hics workstation. This study is a continuation of that project with

"*'.',the goals of providing more realistic targets and allowing viewing the terrain from

inside several different types of vehicles. In addition, the use of Ethernet network

communications between two workstations taking part in the simulation is used to

VI.- create a missile/target gaming environment.

"=£ "~ T " h s w o rk w as SU Ml~ nd b iv P i US A rm y C o m h ot r Nv el o mr ent i |-xpe rm en t on C ete r. Fk v rd , C(ih fo n i. th e

,. '..Nmv -an Systems Center. San Diego and the Na'val Postglraduate School'i Direc-t Nundmg Prog~ra T1h work was

¢£."genrarted fromn Michsel R Oliver's and D~avid J Stahl, Jr.'s Joint %Masterq 11'ts

V.-

% . % % %t

V,

,--

,.,

'- TABLE OF CONTENTS

I. INTRODUCTION .. 8

A. BACKGRO UND .. 8

B. LIMITATIONS OF THE ORIGINAL SYSTEM 9

1. Frame Update Speed ... 9
2. Vehicle Anim ation .. 9

3. Networking ... 10

4. User Interface ... 10
C. O RGANIZATION .. 10

II. EFFICIENCY IM PROVEM ENTS ... 12
A. PRE-FLIGHT ... 12

' ". 1. Data file form at .. 12

2. Terrain Polygon Construction ... 15
3. Coordinate System .. 19

B. DISPLAY LOO P ... 20

S1. Revised Functions .. . 21
a. Ground Level .. 21

b. View Bounds .. 21
c. M iscellaneous ... 24

2. Data Structures ... 26

C. RESULTS ... 31
III. MOVING VEHICLE CONSTRUCTION AND DISPLAY 35

A. THREE-DIMENSIONAL GRAPHICAL DISPLAY 35
. 1. Z-Buffering ... 35

2. Binary Space Partitioning .. 37

3. Painter's Algorithm .. 39
4. Scan Lines .. 40
5. Backface Polygon Removal .. 41

B. HIDDEN SURFACE CO M PARISONS ... 42
C. TARGET TYPES AS OBJECT S .. 43

1. Tan k ... 44
2. Jeep ... 51
3. Truck .. 55

* 4. M issile .. 60

D. TARGET ANIMATION 62
1. Initialization 62

2. Display Loop ... 66

4

w-.,

%.",

.5

a. R ead ()perat i ('. .tr. 66
b. D etine the V iewing Boundary ... 70

c. U pdate the V ehicle Positions ... 72

d. Updating the Vehicle G rd Array .. 78
e. Updating the Viewing Orientation .. 86
f. Displaying the Terrain Map and Vehicles 90

IV . N E T W O R K IN G ... 10 3
A. CAPABILITIES ... 103
B . IM PL E M E N T A T IO N ... 105

C . L IM IT A T IO N S ... 111
V. MOVING VEHICLE SIMULATOR USER'S GUIDE 113

A . IN T R O D U C T IO N .. 113
B . IN IT IA L IZ A T IO N .. 113

1. O penin g M enu .. 116
S2 . M ain M e n u .. 1 16

a. Options .. 116

b. D efi ning V ehicles .. 117
3. Switch Vehicles Menu 120

C . D RIV IN G CO NTRO LS .. 121
1. D riven V ehicle Controls ... 121
2. D riven V ehicle V iew s ... 123
3. M enu Selections .. 123
4. T arget D estruction .. 126

VI. CONCLUSIONS AND RECOMMENDATIONS 127
A . L IM IT A T IO N S .. 127
B. FUTU RE RESEA RCH ... 130

LIST O F REFEREN C ES .. 131
IN ITIAL D ISTRIBUTIO N LIST .. 132

Accession For

'e. NTIS GRA&I
DTIC TAB El

($~. I AvmUmbility Codes
4. 9.I) tivail and/cr

5 IDIat Special

-p

* v , . *..

LIST OF FIGURES

2-1. D T E D F ile Layout .. 13
2 -2 . T .. . 1 4
2-3. Simulator Elevation File Layout 16
2 4. Te-rain Elevation Data Input (Revised) ... 17
2-5. Terrain C ontour Polygons .. . 18

2-6. .Terrm in Polygon Construction .. 19
2-7. Terrain Polygon Construction (Revised) 20
2-8. Perspective Viewing Volume 23
2-9. T errain Polygons D raw n 25
2- 10. Display Rate vs. Number of Vehicles (Old Data Structure) 27

2-11. V ehicle O bject A rrays ... 30

2 2- 12. Display Rate vs. Number of Vehicles (New Data Structure) 33
3-1. Z-Buffer Algorithm ... 36
3-2. B SP T ree C c:-struction ... 38

, 3 -3. P aintei's A lgorithm .. . 39

31-4. Scan Line Algorithm .. 40
3-5. B ackface Polygon Rem oval 4 1
3-6. Polygon D raw Sequence .. 43
3 -7 . T an k P acts .. 4 5

3 8 . D isto rted T an k .. 4 6
3-9. Tank Turre, and G un Drawing Order .. 47
3-10 . T ank T racks 4 8

3- II. Tank Track Special Drawing Technique .. 49
3 -12 .T an k F:u ll P rofile .. 50

3 - 13 . Jee p P arts ... 5 1
3-14. Jeep T ire D raw ing O rder ... 52
3-15. Jeep C abin D raw ing O rder .. . 53
3 -16. Jee p F ull P ro fi le 54
3 -17 . T ru c k P arts 5 5

3-18. Engine, Cabin and Trailer Drawing Order 56

3-19. T ruck T ire D raw ing O rder .. 57
3,. 3-20. Truck Tire Special Drawing Order 8
3-21 Truck Full Profile .. 59
3 -2 2 . M issile P arts 6 0
3 23 . M issile F ull P ro fi le 6 1
3-24 Vehicle Definitior D ata Linked List .. 63

041 6
0.

"o" .8

3-25 Vehicle Gridi Array .. 65
3-26. Reading Operator Controls ... 67
3-27. Dial Box.. 69
3-28. Define the Viewing Boundaries .. 70
3--29. Viewbounds ... 71

3-30. Update Vehicle Positions... 73
-7-3. Vehicle Speed ... 75

3-32. Incline and Tilt Computation... 77
3-3 3. Determining Where to Draw a Vehicle..................................... 79
3-34. Fir-st Quadrant Example Drawing Order 81
3-35. Overlap C~ode Bits... 82
3-36. Grid Square Edge Threshold Values .. 83
3-37. Drawving a V, hicle in an Adjacent Grid Square........................... 85
3-38. Updadte Vehicle Grid Example ... 87

*3-39. Lpat 'he Look Position... 88
3-40, Calculatirg the L.ook Position.. 89
3-41. Display Terrain Initialization .. 91
3-42 Viewing Transformations... 93

-. 3-43 Octant Scan Lines.. 95
3-44. Displaying an Octant.. 96

*.3-45. Displaying the Vehicles... 97
3-46. Vehicle Axis ... 98
3 -47. Vehicle Course .. 100
3-48. Displaying the Missile .. 101
3-49. Destroyed Vehicle... 102
4-1. Simulator Systems ... 104
4-2. Network Connections ... 106
4-3. Initial Data Transfer ... 108

*4-4. Display L.oop Data Transfer .. 109
5-1. Contour [Displays... 118
5-2. D~riving D1,;play ... 122
5-3. Jeep View.. 124
5-4. Tank Vie\& 125
6-1. likp11tv" Scene ... 128

- 7

0r1 r.

1. INTRODUCTION

A. BACKGROUND

This study is a continuation of the development of the graphics simulation described

in I1I. Previous research has produced a real-time flight simulation of a missile flying

over three-dimensional digitized terrain displayed on a Silicon Graphics, Inc. IRIS-3120

high performance graphics workstation. The simulation allows interactive control of the

missile's speed, course, altitude and camera viewing orientation. The missile controls

and camera display were designed to mimic the actual FOG-M control panel used by the

4 military. These controls can be used to maneuver the missile over the terrain to locate,

designate and destroy any target of opportunity. The targets are ten tanks arbitrarily

located on the terrain map traveling at a speed of fifteen knots. Each tank's course is

. constant until a map boundary is reached at which time the course is reversed. Once a

target has been destroyed, the program is reset allowing another missile to be launched at

any of the ten original ten tank targets,

- This study developed a Moving Vehicle Simulator using the same terrain database

and program organization as the original FOG-M project. The vehicle simulator

* interfaces with the FOG-M simulator via a communication link allowing two

-i independent users to interact with each other in real-time.

4

8

A.. - -- dy- t

B. LIMITATIONS OF THE ORIGINAL SYSTEM

The goal oi the original FOG-M study was to develop a low cost simulation of a

missile flying over digitized terrain. This goal was satisfactorily achieved and has

subsequently opened many new areas of research. Some of these new areas are discussed

in this study. The primary goal of this study is to produce a moving vehicle simulator

that presents out-the-window views from several different types of vehicles, and to

incorporate both the original FOG-M system and the Moving Vehicle simulator into a

network of cooperating simulators. A specific objective in continuing the original FOG-

M project is to improve the simulation speed and enhance the display realism.

1. Frame Update Speed

The standard frame rate for a motion picture is twenty-four frames per second.

It is the goal of any real-time program to achieve such a frame rate. The original FOG-M

project has an average frame rate of three frames per second. An improved frame rate of

six frames per second has been achieved by limiting slow math function calls and

graphics object manipulations. The algorithm for displaying the terrain and vehicles for

example, has been rewritten to draw only the polygons in the user field-of-view. While

the new frame rate is still much less than that of a motion picture, it presents smooth

motion.

2. Vehicle Animation

The types of vehicles that can be displayed has been changed from only tanks in

zhe FOG-M simulator to tanks, trucks and jeeps in the Moving Vehicle simulator. These

vehicles can be preset to a desired course and speed and positioned at any location on the

terrain. A vehicles's course is modified when it attempts to climb a steep hill, with the

9

e04w

; -

t'I

vehicle also inclining aric, tilting. These combined effects give a more realistic view of

actual vehicles traversing rough terrain. In addition, the system allows an out-the-

window view> from anw vehicle on the terrain.

3. Networking

To improve the realism of the project for ,ehicle purtrayal, it second Silicon

Graphics, hic. iRIS-5312(1 was connected to tnc missile graphic," vorkstat'on via an

Ethernet :oMmunications link. Use of thiN connection allows r)ne operator to

interactively conrol the missile flying over the terrain, and a second operator to

interactively control vehicle targets. When a vehicle is destroyed, an explosion and pile

of metal :s displayed.

.; 1. Se /Cf m

TFhoughout the implementation of this project, speciai consideration ha:i been

given to provide user friendly menus and displays. In addition, the time to load the

digitized terrain data has been mieuced to prevent lengthy periods of waiting.

C. OR(-AN1A/iZeTlN_

The above sections of this chapter have provided a background on the major areas

described in this study. It is expected that the reader has a familiarity with computer

Sraphics and the basics of real-time interactive computer graphics techniques. Chapter II

discusses the specific efficiency improvements that have been made in developing the

vehicle iTnuilator as coimnared to the OG-M system. The display improvements and

additions) the H X; M s;mulatnr such as target object creation, new data structures used

and hidden surtace meth(xls employed are covered in Chapter I11. The added capability

of networkinv two w,)kstations is discussed in Chapter IV. In addition, a brief review of

II
10

%.1

hidden surface algorithms is included with the target object discussion to give the reader

a better understanding of the graphics techniques used in the simulator. Chapter V

contains a user's guide for operating the Moving Vehicle Simulator. Chapter VI

concludes with discussion in the areas of future recommendations for follow on research

and summarizes the research conducted.

'pO

'"

Id"I

, .

1H. EFFICIENCY IMPROVEMENTS

A. PRE-FLIGHT

Pre-flight processing in the original FOG-M simulator consists of the following

general steps:

- input raw terrain elevation data
-convert raw data to program internal form
- store converted data in internal storage structure

-' - create graphical objects for subsequent display

Data input, conversion and storage presently cause a 100 second delay before the

simulator is ready to display animation. Each of these areas was examined with the

intent of reducing pre-flight processing time to provide a more responsive simulator. The

efficiency of the fourth area, creation of the graphical objects, is dependent on the

performance of the IRIS graphics library routines, and thus was not considered.

1. Data file format

The FOG-M simulator and the moving vehicle simulator use Defense Mapping

Agency (DMA) digital terrain elevation data as the source of elevation data for

portraying the three-dimensional scene. This data is stored as a sequential stream of

sixteen bit integers, with each two bytes representing one elevation datum. The upper

three bits of this word represents the height of the vegetation at that data point. The

lower thirteen bits represent the terrain elevation at that data point, without the vegetation

O height. The entire database is stored as shown in Figure 2-1. Data points in each square

kilometer of the terrain are stored a column at a time, staring at the most western column

of data. Each one kilometer length column of data is stored starting from the most

12

O'

Xp '%z

% .,

I KM

II

- ---- i

I 1 K.M4$4-

7, ' 1 T 2 1 DTED File Layout

13

0, ", ° , o " . % " ' . - . % % . % o -- . . " " , o , -° - _ , . - . °. - . . . - * .• . ,

;

southern point in the column. The southwestern square kilometer of the database is

stored first, with the remainder of the database stored in individual square kilometers:

from south to north, and from west to east. A detailed description of this file layout can

be found in [Ref. 1: pp. 20-241.

The original FOG-M simulator read a one-hundred square kilometer region of

elevation data that was stored in the same format as the master file from which it was

extracted. Elevation data points were read into a two-dimensional array of short integers,

gridpixel[][. Storing the set of points in this manner facilitates referencing an elevation

by its X-Z coordinates. The arrdy element gridpixel[Z It X I stores the elevation at

north-south coordinate Z, east-west coordinate X. Due to the peculiar storage format of

the DMA data, however, the DMA file must be read with a number of nested loops to

store an elevation data point at the correct array index. This nesting of loops contributes

to the slow pre-flight processing time readily obvious in the FOG-M simulator. A section

of this FOG-M code to read the terrain elevation data appears in Figure 2-2.

for (coloffset = 0; coloffset < NUMXGRIDS * 10; coloffset += 10)
for (rowoffset = 0; rowoffset < NUMZGRIDS * 10; rowoffset += 10)
for (col = 0; col < 10; ++col)
for (row = 0; row < 10; +-+-row)
read(fd,&gridpixel[rowoffset+row][coloffset+col],2);

Figure 2-2. Terrain Elevation Data Input

61

N -. '

An improvement was achieve. by reformatting the terrain elevation data file to

match that of the two-dimensional array in which it is stored during program execution.

The reformatted file is stored as shown in Figure 2-3. Data points for ten lengths of ten

kilometers are stored a row at a time, from west to east along a row's length, and from

south to north, going from row to row. This matches the C compiler storage mapping

function for two-dimensional arrays. An array dted[Z DATA PTS][X DATA PTS] is

stored in memory a row at a time, starting from dted[0[01 through

dted[O][X_DATAPTS-I] for the first row, and so on for subsequent rows. To input the

terrain elevation data upon program startup a single loop is executed, with an entire row

of the array read at each pass through the loop. This much simplified code for reading

the terrain elevation data appears in Figure 2-4.

2. Terrain Polygon Construction

The FOG-M simulator constructs a three-dimensional contour from colored

.J1F triangular polygons. The ten kilometer by ten kilometer area of missile flight is sectioned

into hundred meter squares, with each square consisting of two triangles. Figure 2-5

depicts this arrangement, and the terminology used. The world coordinates of triangle

vertices are stored in a five dimensional array gridcoord. Indices of this array are:

gridcoord [ZJ[XJ[which triangle][which vertex][which coordinate]

0.- The example vertex in Figure 2-5 is located in the upper triangle at row 99, column 1,

and its X, Y, and Z coordinates are stored in

gridcoord [991 [11 [U] [0/ [XI
gridcoord 199/ /11 /UJ 101 IY!
gridcoord [99/ /11 [U] [01 [ZI

,,.-,,.-15

O'-
* ,9'

.0",,

.-.----- low

Figure 2-3 Simulator Elevation File Layout

I,.,•

16

% % V

.d " -""

- E 2 S 1 1r

for (rnw = 0;rw < Z_ DATA IPFS, *+rov%)
rejd~td.& dtedlrowIf 0J,20K');

Figure 2-4. Terrain Ele ,aton Data Input (Revised)

Note that these coordinates iafe the same for all three triangles having this common

vertex. Displaying one vir~fraie 4f terilii c-onsists of looping through X and Z

5. indices of the gridcoord array to seec! triantle coordinates for polygons to be drawn,

then calling the IRIS graphics library polygon. fill roditine with the appropriate color.

Values for the triangles' c(xknllnatcs ire- determined prior to nissule flight in the function

mizketerrainf The elevation diata array pio\ rde , the height (Y) coordinate value, and a

call to function lig htorie'rit' provJeIs the polyvgon 'scolor. As Ref I] stated, raw

elevation values are scaled to provide rea ism, using an exponential scaling. This

requires a math librar-y funiction call to the procedure pow(,. Te original FOG-M

program treated each triangle's s et of coor-dinates separately from adjacent triangles

when performing this scaling, even though most verl 'es are shared by as many as six

adjacent mrangles. This resulted in a call to pow(o six ti -ies for the same vertex, as each

* of the six trangles sharing the vertex were processed. A pseudo-code summary of the

calls *:n create the terrain polygos is givvui in igur 2-6.

A marked improvement in pre-flight processi,! time was achieved by

performing the height scaling calculation only once for each m'iangle vertex. Once this

was done, an additional improsement was realized b\ storing the elevation data file itself

5-.'

with scaling already performed on each data point. Elevation data input and storage of

17

S' Fgr -. TranEeainDt nu Rvsd

*k m *..m~..* .. .-

numbering indicates vertex
ordering within a grid square
for backf ace polygon removal

C.Z U=1=upper triangle Example__
vertex 1 0

2

-2
_ _ _ _ _ _ 0 1

L=0=lower triangle

~z~- 100 meters

JL10 "GRID SQUARE"

KM 100

* j.~------------10i KILOMETERS - ' x

Figure 2-5 Terrain Polygons

18

V - % %'

-

maketerrain()

for each row of grid squares do
for each column of grid squares do

for each riangle in a grid square do
for each vertex in a tnangle do
call powo to scale elevation (Y coordinate)
store vertex coordinates for this triangle

- . call lighumrientO) k determine color

Figure 2 6. Terrain Polygon Construction

0 terrain polygon vertex coordinates was reduced to simply reading from a file and

assigning the gridcoord array element values, with no math library calls for scaling

needed during program execution. Note however, that this requires use of an external

program to properly read and scale data from the terrain master file and to properly

format output to a file used by the simulator. A slight modification was also made to

function maketerrain() to speed up determining a terrain polygon's color. Results of a

-~z. run-time profiler revealed function lightorient() contributing most to the slow execution

speed of maketerraino. A change was made to maketerrain() that allowed the creation of

* a file to store polygon colors if desired. Subsequent runs of the program can then make

- use of the color values in this file, eliminating calls to lightorient. Figure 2-7 provides a

pseudo-code summary of revised function maketerrain).
0.

3. Coordinate System

The initial choice of world coordinate system was based on the DMA terrain

- data: elevation heights in the database are measured in feet. As described above, the

missile flight area is sectioned into a grid of hundred meter squares, with one hundred of

19

I'

maketernin()

if color file exists, read in all polygon c':,rs
for each row of grid squares do

for each vertex in a row de
store vertex coordinates for all triangles sharing this vertex
if color-file does not exist,
call lightorientO Lo determine color
store color in color-file

Figure 2-7. Terrain Polygon Construction (Revised)

Pd.

these squares in both north-south and east-west directions. This choice of using a metric

grid and using data values in the grid measured in feet required several of the program's

% •routines to perform conversions between coordinate systems. This conversion introduces

costly floating point divisions and multiplications, which directly affect both pre-flight

.2 processing time and display loop run time. Since points in the terrain database file were

- - to be scaled prior to reading the file, an additional conversion of the scaled value to its

metric coordinate system equivalent value could be done to avoid the need for

conversion between coordinate systems. This off-line preprocessing of the terrain

database was done. In addition, a metric coordinate system was consistently assumed for

.. all calculations in the follow-on version of the Moving Vehicle Simulator.

B. DISPLAY LOOP

0.- Realism in an animated display depends heavily on the appearance of smooth

motion. For a simulator such as the FOG-M, which constructs the scene as a collection

of filled polygons, it is desired that most of the program's execution time be spent in

20

O,I.-

r.

A
f.,

drawing the scene. A large portion of the display loop in the original FOG-M simulator

was spent preparing the graphical objects and the data structures that manipulated them

for subsequent drawing. The efficiency of the functions used in display loop

calculations, and the data structures used by the program to manage the display, were

examined with the intent of increasing the simulator frame rate.

1. Revised Functions

a. Ground Level

The graphics commands used to draw the three-dimensional vehicle images

of the FOG-M simulator were collected into graphical objects (Chapter III gives a

detailed account of the actual construction of each of these vehicle objects). Rotations

and translations used to transform a typical vehicle to its correct position and orientation

in the viewing volume are performed on the object as a whole. Translation of a vehicle

object to the appropriate height on the terrain requires determining an interpolated height

value with a call to the FOG-M program function groundlevel(). Interpolation is

necessary since height values are explicitly specified only at terrain polygon vertices, yet

a vehicle can be located anywhere on the terrain. Simplification of the original

ground level() function resulted in an improvement of 50% in execution time for this

function. Since this function is called once for every vehicle drawn in the display loop,

this improvement is significant for systems having a large number of vehicles.

*l b. View Bounds

The Silicon Graphics IRIS workstation uses custom VLSI chips to provide

hardware clipping and matrix transformations. Viewing, modeling, projection and

display device transformations are performed in this high-speed pipelined architecture at

21

!

a much faster rate than is possible in software Application programs need only specify

the desired viewing volume and need not worry about clipping points, lines, planes, or

surfaces to this volume. Any drawing done by an application program that takes place

outside of the currently specified viewing volume is automatically clipped.

The FOG-M simulator defines a perspective viewing volume with a

viewpoint located at the current position of the missile camera in world coordinates. The

Moving Vehicle simulator defines a similar volume, with the viewpoint being that of the

driver in the vehicle currently being operated. In b)th simulators, the field-of-view is

limited to a maximum of fifty-tive degrees. This arrangement is shown in Figure 2-8.

Depending on the location of the missile or vehicle in the viewing volume,

some of the polygons in the scene are outside the tield-of view, and hence should not be

seen. The simulator could take advantage ot the IRIS graphics hardware clipping

capability to eliminate the non-visible polygons. Conceivably, each display frame of the

three-dimensional terrain contour could be generated by drawing ill of the filled terrain

polygons on each pass through the display i)op. This is not done, simply due to the large

number of polygons that coiaprise the terrain. ,Viih hundrud meter squares, composed of

two triangles each, the full one hundred square kilometer flight area contains twenty

thousand polygons! Even with fast custom hardware to do the clipping, the frame rate

would be too slow to provide a realistic sensation of motion over the ground. Sending

only a portion of the polygons through the hardware pipeline to be clipped and drawn

obviously speeds up the frame-to-frame display It is readily apparent that none of the

polygons in the direction opposite the line of-sight are visible Based on this fact, the

original FOG-M simulator performs a determination in the function viewbounds() of

22

S%

.k'
. o.

Viewing Volume

-V.'

Terai

* 00

z
5 de r e

Fildo Ve

.1~x

Figure 2-8 Perspective Viewing Volume

23

0%

which Subset of pols oni prr .,- i iii tnc- I 1ur .i rj are. I erehk sdin

viewi.bountivo to do this determ11naTion reuin 1 he ,et of os oi to he clipped and

* ~drawn forming a rec.tani~ige around thefiew pon.Iiowke-er, this set still contains

* - polygons that are not %isible. (nl% those pool% gris in the line of-sight that are actually

within the tied] of- vi. 'A. 'i i ~ io ii * fa , ti ,Are'a> increased

further by e\on ki-'t n, r'K '..tm ; u i'a e!r1l are actually

clipped and draiwn. I d art an l on \k..r' wef th : c . I pea~ zoomns the

camera in: as fewer polvcon * arr dr-w.,ii. itue itsi'vap-ears ,nioother As shown in

*Figure 2-9, the nmberh C ot pIIx Or that irc ii arvtormed, clipped, and dirawni can greatly

-. vary. lrawtng ionl, those Lx),grwIn'I ,Tt. 1:1 1w 1(I oI-vi-%k . howe ver. ensures fewer

poxlygons are Lil''r In tLCr ~ . N .- Itt -miir

An ia ' f rn n icand Nc hit: Ic in thc display is done by drawing

- ~~these oblec t at slmghtl\ : r: lC nr 1 m'n frume -to-framre. Calculations are

* ~~performed in th is d iS"p:- ~ !PtA-2 I lft -f -!-e nti si' and targe t vehicles as

they! traversccc 11CrlnI[. Am !1C V,~I t. d tiinetioU0 0' its current po~sition,

the direction in which it i, travehnr and it,,spc rgioetcuntIon ntemt

library were used in the original simulator to determine new object Positions and to

perform calculatiins ba.,ed (In w.Oiich direction uinc fiissile camnera was turned. To

* miimi e t e ti e i taes :o cluate trit conon erric function values, lkxokup tables were

constructed fthe (-(rwire ind tangent t,, ri('n, These tables p)ro\vide quick lookup

results, at a resolution of one tenth o)f a 10~~ pe pclultosinosin h

arcsin relation the small aiiOe ipproxorxomn also use:VT Ior angles less than fifteen

24

SV

Polygons within boundary are drawn

Original Method

* /

V - - - _

- -q -

* Wide Field of View Narrow Field of View

'.4 Figure 2-9 Terrain Polygons Drawn

e, 25

0v
............- *- - * **.

n.

.. -.- i ".-' "i- i . ,27 L ..'..- .i .i'. ? -?. v~i.... .,.:2 ."' .v ,..''.' <'':,:-:.' .'v ..', "- .'..: ''.' :: " -'- '. .. .,*.-.-

degrees, the sinc or Lhe angle is equai to c anglt t't, with an error of about one

percent. This a[)prt)oximation Is -used in tWe "Ooving Vehicle simulator since arcsin values

are required for small angles only the inpiovenient achieved using look-up tables and

' the small angle approximation is shoan ,'I abie 2-1

'IABLE 2-1. [IV(I'P t IG(.} ",i -Ki(.t 1LN('IIONS

-,"lat~h-U rirv r n r-'-',."F unction I - Im provem ent
." Milisc, rer cai ______Cal _

tan 0. . .__ 027 463%
sin/cos -. 01140 528%
arcsin ___ 57 0.011 1442%

2. Data Structu,-es

The average frame update rate achieved hy the original FOG--NI simulator,

which allowed a tixed numbter of rudicricutary , Thi .l'> :r the scene, is less than three

frames per second. Widh the real ,,ehicic dynaics capibility described in Chapter III

added to the simuia;tor, thc frame * p,.iarc;,- '. -i1;s with the number of vehicles drawn.

Figure 2-10 shows this Fearionhip. Lven ,i h oilsi a small number of vehicles in the

scene, the perfrmnace '4 the h!,mu-c',- dr' -,i a" ,n:c *,ahl: level The UNIX

profile utility was used to determine exactly which routines cause this "bottleneck", with

the top four time consuming display loop routines shown in Table 2-2.

* The first two entries in dhe table are easily explained. Since the simulator makes

-" .heavy use of polygon fill to draw the dcsird scene, it is expected that the graphics

library function pu/fi' would take a considerable amount of the CPU time. Likewise,

* since the majority of display; loop drawing takes place in function dtsplav terrain), the

same conclusion can be reached. The last two entries in the table, however, are a direct

result of the choice of data stnjcture used in the original fOGNI simulator. Details of

26

1% " - - -- -

W PJ.p-

.1lq

u Ci)

0

-4

U)U
7F -

0

p, 00 G

0 CD

C14

CD
En)

4 _____________________________________ 27

TABLE 2-2. FOG-M ROUTINES USING THE MOST CPU TIME

% CPU Time Routine Name Purpose

16.9 polf Iris graphics library
filled polygon routine.

13.7 display-terrain Output 3-D scene
with hidden surface
removal.

8.7 malloc C language built in
routine for dynamic
memory allocation.

4.5 gl-findhash Low level Iris graph-
ics library routine,
used for the hash
tables associated with
graphical objects (Not
user accessible).

this implementation can be found in [Ref. 1: pp. 76-811. A short summary of the data

structures and their use in the original FOG-M simulator is presented here as background.

Their impact on simulator performance was explored in this study.

The "painter's algorithm" for hidden surface elimination as described in Chapter

HI is used by the FOG-M simulator. This algorithm draws a scene much as a painter

would, with distant objects drawn first, and with hidden surfaces overpainted by closer

objects. The algorithm is easily implemented for a scene drawn as a grid of squares. For

missile flight over bare terrain, without trees, buildings, or vehicles present, no other

algorithm or refinement of the painter's algorithm is needed. The algorithm ensures

hidden terrain surfaces are obscured by surfaces closer to the viewpoint. With nothing

more in the scene than terrain polygons, there are no other surfaces that might be

obscured by, or that might themselves obscure the terrain. Integration of targets into the

scene introduced new complexity to the hidden surface removal problem. Management

of vehicle targets in the display was attempted in the following manner.

28

S% - p'j ..~.~~<*
' * *

o

,.

A vehicle object moving over the terrain is associated with an element of a

global two-dimensional array, with one array defined for each vehicle type. The range of

indices in this array corresponds to the number of hundred meter grid squares in each

dimension of the missile flight area. Tank objects for example, are associated with the

* array tanks[lO0][100]. The specific array element indices a particular tank is associated

with is determined by the grid square it occupies. This is illustrated in Figure 2-11.

Tank 'A' is situated in row Z and column X, and is associated with array element

target[ZJ[XJ. Similarly, tank 'B' is located in a grid square at row Z, column X+2, and is

associated with array element target[Z][X+2]. The values stored in these arrays are the

integer names of the graphical objects that should be drawn at some point in the painter's

algorithm. These values are initially set to zero, indicating no vehicles are present. Once

the target vehicles are defined, drawing vehicle objects on the terrain can be done by first

drawing a grid square, then accessing the object name array to draw any vehicles that

might be present in that grid square. Note that two or more vehicles present in one grid

square are associated with the same array element, and that the commands necessary to

draw these vehicles are collected into the same graphical object. In addition, a vehicle

crossing grid square edges is drawn in each grid square it occupies. This results in an

individual vehicle having as many as four sets of identical drawing commands in four

different graphical objects to draw that vehicle correctly with respect to hidden surfaces.

Since vehicles can move from one grid square to another between frames of the

display, a means was needed to reflect the changing association between vehicles and the

array element they corresponded to, as used by the painter's algorithm. The choice was

0. made to delete all vehicle objects and recreate them at each pass through the display

29

,-

7- q*
x

-*
'

' . -

Iz

TANK 'A'

grid square Z,X

TANK 'B'

grid square Z,X+2

I I

grid square 0,0

grid square 0,99

target object name array

target[0] [0]-

target [0] [1]

_F1

target [Z] [X] TANK 'A'

target[Z] [X+2] TANK 'B'

Figure 2-11 Vehicle Object Arrays

30

"A'

loop. This implementation is deficient in three respects. First, the repeated creation and

, deletion of graphical objects makes use of routines mallocO and gl__indhash(). As

evidenced in Table 2-2, these two functions take a significant amount of CPU time and

are the cause of the display update bottleneck. An alternative to this approach that does

not make use of these slow functions is thus suggested. Second, drawing a vehicle as

many as four times as it crosses a grid square edge is both time and space consuming.

Third, the hidden object removal problem for vehicles in the scene is solved only for the

special case where no more than one vehicle occupies each grid square. In the case of

several vehicles occupying the same grid square, the commands to draw each of these

objects are added to the existing object in the order the vehicles are processed, not in

depth order. This results in vehicles further from the viewpoint possibly being drawn

after and overwriting closer vehicles in that grid square. All of these deficiencies were

corrected with choice of a different data structure for managing the display. The Chapter

III discussion of hidden surface removal includes a description of this data structure. The

repetitive creation and deletion of graphical objects and the need to draw vehicle objects

more than once was eliminated by using the new structure. The correction of these three

deficiencies has increased the simulator display rate.

" C. RESULTS

Significant improvements were achieved in simulator performance using the

techniques described above. Pre-processing time was considerably reduced, as shown in

Table 2-3.

31

%*%. t

-S..t
° '

'''''''"". ' .t/ P , '€.,' , ,,'', _ ' . - - - ._. r
-. ". % -. I t_'t% % ' %d % % -" t% .% " " ""% " ' *" " * " ",% -"

TABLE 2-3. PRE-FLIGHT PROCESSING TIME IMPROVEMENT

Simulator Version Total Time
I Original I min 41 seconds

Revised 17 seconds

The simulator frame update rate was increased by approximately a factor of three.

Although this figure seems low, this improvement was achieved with the addition of real

vehicle dynamics capabilities, and with the correct display of hidden surfaces in the

scene. Figure 2-12 shows the frame update rates achieved in the revised simulator using

the new data structures, for various number of vehicles in the scene. A UNIX profile

indicates the success of using the new data structure. Table 2-4 lists the top four routines

using the most CPU time in the revised simulator. The majority of processing time is

spent in function display_terraino, drawing the polygons that comprise the terrain and

- the vehicle objects. Table 2-5 summarizes display update rate differences between the

two versions of the simulator. In this table, 'static' refers to the type of vehicle objects

drawn in the original simulator. 'Dynamic' refers to vehicle objects that more accurately

model normal vehicle motion over rough terrain, a feature not present in the original

version of the simulator. This added capability is further explained in Chapter III. The

frame rate values are for the indicated number of vehicles, the maximum fifty-five

degrees field-of-view, and the largest possible number of polygons drawn, giving worst-

case update rate values.

32

d
9

N)

U) 00

>) U

'~ .4 (Q

bD 4 >
r. C~ C) (0

>0 x- 0
0)'-

"-44

X C)

CL.)

33O

e r .: g

TABLE 2-4. MOVING VEHICLE SIMULATOR ROUTINES
USING THE MOST CPU TIME

% CPU Time Routine Name Purpose

20.2 i polf Low-level filled po-
lygon primive used

by the Geometry En-
______________________ gine. _ _ _ _ _ _ _ _ _ _

11.7 display terrain Output 3-D scene
with hidden surface
removal.

-7.1 pol Iris graphics library
user-level filled po-

,__,_ _ _ _lygon routine.
4.1 qtest Tests for events on

the valuator queue.
Called in the display
loop to test for menu
selections.

TABLE 2-5. DISPLAY UPDATE RATE IMPROVEMENT

Simulator Version Number of Vehicles Frame Rate (frames/sec)

Orgnl1 (static) 2.6~Original
10 (static) 1.9

Revised I (static) 5.7
_ _.._.- 10 (static) 4.0

Original I (dynamic) ___ 1.4
.. ,,_ _. 10 (dynamic) 1.2

"-""I (dynamic) 5.3": . Revised
,..-... __10 (dynamic) 4.3

A 34

. . -.'

.Y1i

I O

-. .. -. w." -

III. MOVING VEHICLE CONSTRUCTION AND DISPLAY

A. THREE-DIMENSIONAL GRAPHICAL DISPLAY

Many different algorithms were studied for optimizing the display of graphical

objects in a three-dimensional scene. The major problem with time efficient display of

graphical objects is the drawing order of the polygons required to show a non-distorted

view. To solve this problem several algorithms were examined. A brief discussion of

* each of the drawing algorithms' merits and downfalls is given below for their

implementation in a real-time graphics display. Throughout the following discussion, the

term distortion implies an incorrect drawing order of polygons resulting in an undesired

view of an object.

S1. Z-Buffering

Z-Buffering is a simple yet time intensive approach to eliminate hidden

surfaces [2]. This technique draws only the pixel having the smallest z position of all

the polygons displayed in the viewing volume. Figure 3-1 shows two polygons A and B

* each having a different depth z from the view position. Since polygon A has the smallest

z coordinate for the pixel point selected, its pixel is drawn instead of polygon B's pixel.

Note that this comparison must be performed for each pixel of each polygon drawn.

The actual implementation of the Z-Buffering algorithm requires the use

of two buffers, the z buffer for the smallest z position of all the polygons and the frame

buffer for the intensity values of the closest pixel. The algorithm first initializes the

buffers, then for each pixel of every polygon in the scene calculates a z coordinate and

35

%',

0 y

-z

Pixel
(x,y)

Figure 3- 1. Z-Buffer Algorithm

36

*%"'

compares it to the last z coordinate stored in the z buffer. If the new z coordinate is

smaller than the z buffer coordinate, the z buffer is updated with the new value and the

intensity value of the new pixel is stored in the frame buffer. After this process has been

performed on all the polygons, the two buffers contain the polygon pixels and intensity

values for the scene to be displayed.

2. Binary Space Partitioning

The Binary Space Partitioning (BSP) algorithm is based on storing

polygons in the view volume in a sorted tree ([3]. The tree is sorted with respect to a

polygon being in front or back of a defined partitioning plane. To view the scene, the
'C

polygons are drawn utilizing the current viewpoint and view direction as guides to the

N " ' ' tree's traversal.

The most difficult thing to understand about the BSP construct is how the

tree is used to draw a scene. This can be explained by using a simple illustration. Take

for example two halves of a block cut diagonally and separated by a small distance

(Figure 3-2(a)). The algorithm takes each of the surfaces of the two halves and

.-' constructs a tree (Figure 3-2(b)). The BSP tree contains the position of all the surfaces,

- based on their relative location to the partitioning plane. To display a scene, a tree

-- traversal is performed based on the viewer's position and line-of-sight.

37

e -l ,L r** at JA-L

V.k V v- - W Wq9q-WV WRWW-

0B

A0attinn

Top Viewn4

Sa

1BS TreeM

3 6.

5 38

503

6. 2 ~ -

, 0"

3. Painter's Algorithm

The painter's algorithm is related to painting a picture on canvas. A scene is

created by painting the background first, followed by painting all the other objects in the

scene over the background or each other based on their depth of field in the scene. In a

- graphics environment, this is similar to painting the furthest polygons first followed by

the closest polygons. Figure 3-3 shows a progression of three polygons A, B and C with

A being the closest, C the furthest and B in the middle. The painter's algorithm

calculates the distance from the viewer for each polygon and draws them in order of C

then B then A. Any overlapping of the polygons is obscured by the closest polygon.

y

Sz

x x

-z

Figure 3-3. Painter's Algorithm

-, 39

-.-

. ..

.
..

i7

4. Scan Lines

The scan line algorithm is primarily used to fill polygons that are defined

in a discrete order. As a scan line is defined, all the polygons that it intersects are drawn

in sequence. The scan lines start at the furthest boundary of the viewing volume and are

incremented towards the viewpoint one line at a time. The scan lines are produced by

scanning from left to right, far to near, to draw the numbered blocks in numerical order.

The scene with each scan is drawn from far to near, therefore any polygons that are

closer to the viewpoint are painted over the farthest polygons (Figure 3-4). The scan line

algorithm can be tailored by the designer to start at any depth and draw polygons only in

the defined viewport to provide an extremely fast screen refresh rate.

0

I.I

-z

,1*.

5. Backface Polygon Rerncval

In addition to the painter's algonthn., backface polygon removal is used to

draw only one side of a polygon. The backface po)lygon removal algorithm samples the

rotation direction that the polygon x)int are drawn, clockwise (CW) or counter

- clockwise (CCW) If the polygon points are defined in a CCW rotation, that side is

drawn. This drawing technique can explained by drawing a three-dimensional box

' . (Figure 3-5). Each side of the box is drawn using backface remo ,al to only draw the

outside of the box surface. When the box is completed, all the individual sides are

painted in order of depth. However, the opposite side polygon does not paint over the

nearest side because its backface is not drawn.

y
BACK SIDE CW

-z

FRONT SIDE CCW

X

Figure 3-5. Backface Polygon Removal

% .

' _ 41

O,

B HIDDEN SURFACE COMPARISONS

The performance of a hidden surface display method is dependent on the

application environment in which it is to be used. If polygons are ordered by depth in the

z direction, with minimal overlapping, a depth sorting method may be best. For

polygons that are ordered in the y direction, a scan line method is best. The method

employed is therefore dependent on the application.

The BSP algorithm is primarily used to display a static scene viewed from various

orientations. Once the BSP tree has been constructed, the polygons are drawn by

traversing the tree using the viewing position and orientation. If there is any relative

motion between objects in the tree, the viewing order changes and requires a

reconstruction of the tree. Since BSP tree construction is a time intensive operation, its

implementation in a real-time dynamic environment is not efficient enough to refresh the

display at a reasonably fast frame rate.

From the previous discussion, it can be seen that the Z-Buffering algorithm is

easy to implement. However the Z-Buffer algorithm requires the performance of many

coordinate comparisons to derive the drawing order. This method requires the use of

special hardware in order to be performed at a fast frame rate. On most graphic

workstations presently available, the Z-Buffer polygon fill rate is many times less that of

* the normal shaded polygon fill rate, making this method impractical for a large scene.

A scan line algorithm can be tailored to a dynamic scene if the number of

polygons are ordered in a grid plane. Such an algorithm allows a refresh rate rapid

enough to support real-time visual simulation. The designer of the algorithm needs to be

able to rapidly compute the scan line ordering.

* 42

0ILI

C. TARGET TYPES AS OBJECT3

The use of objects in a graphical environment is similar to a call to a

programming language subroutine. An object consists of a sequence of graphics

commands that are used more than once each scene. By using objects, construction time

overhead can be avoided. We build our objects outside the display loop and then call

those objects via a named reference [4].

The targets and missile are created as graphical objects. They are all constructed

with the painter's algorithm and backface polygon removal in mind for hidden surface

* removal. Each polygon is drawn by defining its vertices, determining its light-shaded
O

color, and then drawing the polygon using a graphics call to a polygon fill function

(Figure 3-6). A detailed description of how each of the targets and missile are drawn is

given below.

y

(I'o-.) P1 I(x) P1 (y); P1 (z);
0. (IXly,lz) P2 (x) ; P2 (y); P2 (z);

P3 (x) • P3 (y); P3 (z);
z B P4 (x) " P4 (y); P4 (z);

light _orient(Ix ,Iy,Iz,x,y,z,&shad)

color(shade);

polf(P,polnts);"x

Figure 3-6. Polygon Draw Sequence

43

0':

All of the objects drawn in thi,. study are built using backface polygon removal

and the painter's algorithm to provide a correct view from any point around the object

from the ground plane and above. Some of the drawing techniques discussed in the

"' subsequent paragraphs do not work if an object must be viewed from below the ground

plane. The local sorting of polygons using the view direction/line-of-sight were tried in

addition to the painter's algorithm. It was found that the sorting of the polygons each

time the scene changed was not performed fast enough to support a real-time frame rate.

Therefore, special drawing techniques are used in this study for each object.

1. Tank

The tank used in the existing FOG-M simulator consisted of three separate0

parts: a turret, a main body and a gun barrel. These parts were not drawn in an order that

presents an undistorted view of the tank from all directions available in three space.

A new tank object was drawn using all the same parts described above

with the addition of two tank tracks. Unlike the existing tank, the new tank object

polygon parts were separated and drawn in an order to always provide a realistic view

(Figure 3-7(a)). Note that the order of fitting the different parts of the tank together can

-.. ' change the way they are drawn on the screen. For example, assume that the turret is

drawn first followed by the main body. Using the painter's algorithm, this would first
S

draw all the sides of the turret, then draw the top of the main body over the turret (Figure

3-7(b)). If we view the tank from above, similar to the view of a missile, we see a

W- " distorted tank. The solution is to draw the main body first, then the turret (Figure 3-7(c)).

In addition to the ordering of separate parts, picture distortion can still

occur (Figure 3-8). This distortion was caused by the gun barrel being drawn first,

44

0,,

Right Track

Gun Barrel

Left Trilck

a.

Distortion

0C.

Figure .1-7. Tank Parts

45

*.N. % N

rank Barrel is cut ut

1 igure 3-8. Distorted Tank

followed by the turret. The front polygon of the turret, when viewed from the front,

paints over a section of the gun barrei. This problem is corrected by drawing the gun

barrel with the polygons of the turrct. The front of the turret is drawn first followed by

the gun oarrel, then the rest of the turret. This paints the gun barrel over the turret when

the tank is viewed from aN)ve or the side Now the tank is displayed without any

d',tornon (Figure 3-9).

Drawing the tank tracks presented some new hidden surface problems. A

realistic three-dimer, ional view of the tank with tracks cannot be achieved by using a
Sl.

°

simple drawing order. The tank tracks are created as a separate object named track, and

46

,

rr." Figure 3-9. Tank Turret and Gun Drawing Order

- ' ame translated and drawn after the tank's main body (Figure 3-10(a)). This drawing order

.'.-,would normally not cause a display distortion if a simple track object was used.

-' Unfortunately the tank track is not a simple object (Figure 3-10 (b)).

...,To maintain a realistic tank image, the track had to also be a three

d'U

,., dimensional object with four sides. Therefore the drawing order of

• . main body, right side
,.'- right track
-"." main body, left side
",,."left track

• is used, with only a few translations to maintain high drawing efficiency. This drawing

€,"" order is only distorted when viewing the tank from the right side. The distortion is

' 47

-. -

-A % .

0~ I5

*.i . , ,. . - - - -, . -r- r-- - ,N , - -- ~ry. 1~ - * j - - v--u------------

! Main Body

Figure 3-10. Tank Tracks

caused by the inside polygons of the left rollers being drawn over the right side of the

main body (Figure 3-11 (a)). This distortion is hidden by using a color for the right side

of the tank that blends with the color used for the track (Figure 3-11 (b)). Since lighting

model calculations are performed only once in the simulation, this method is felt to be

adequate.

48

6o. = • . .

[V
. , •. --

a. b.

Figure 3-11. Tank Track Special Drawing Technique

All of the mentioned hidden surface drawing techniques are used to create

a three-dimensional light shaded tank object (Figure 3-12). The use of various hidden

[• surface techniques allow the tank to be viewed from any horizontal or vertical aspect

without any distortion.

i . -'.-

,...'.. .

Fd49

-11:r.AA

0
r

0

S

0

et

-A

S

~4 tZk J&&a±tv~j~v'r _..~~Ct't*~rwV M~'~ ttQP~J../.$&'.-%t;vX4~'aC

2. , .

The jeep is a graphical object, similar it) the tank, consisting of six parts:

cabin inside, cabin outside, main body, tires, front headlights and rear taillights (Figure

3-13). These parts are drawn in an order to create a three-dimensional light shaded jeep.

The techniques used to integrate the parts into a non-distrted object are discussed below.

Cabin Outside

Cabin Inside

'I: Main Body
0""

- " 0 HeTadllgghs

fligure 3-1 3. Jeep Paris

51

,S-MinBd

The Jeep Loter ,hell is built by irst Irawing uru :owvr main txoy followed

by the cabin. This drawing order causes the upper cabin portion of the jeep to paint over

the lower body of the leep when viewed from above. The tires and lights required a

special drawing order Ahen constructing the jeep's main lower body. A tire is a three-

dimensional black (k tagonai obje,:t that is translatrkd, rW .tc'J;. , drawn over the right or

left side of the jeep's mun bod%. The three-dimensional buNd, whcn diawn in the order

of right side, right tires, left side then left tires, created the samr- distortion when viewing

the jeep from the right side as did the tracks of the tank d1'icure I-14 (a)). To hide this

distortion, the color for the right side of the jeep was made dark cruough to blend in with

the black tires (Figure 3-14 ib)) The headlights are drawn after the front part of the jeep

to allow them to be seen from only a forward .iew .- ach headlight is an eight sided

white tilled polygon that is translated and rotated into a position on top of the front part

of the jeep. Th ,ame pr,,x:edairc is used tor the taillight. drawvn on the hack of the jeep.

a. b.

* wgurr V 14. Jeep Tire)rawing)rd-r

52

A
'4

The jeep cabin had to be designed to allow views from both inside and

outside the cabin. This problem was solved by breaking the jeep cabin into two separate

parts. The inside part of the cabin is constructed of black polygons, all drawn using

backface removal, to only allow them to be seen from the inside looking out (Figure 3-15

(a)). The outside of the cabin is then drawn at slightly larger dimensions so that it paints

over the cabin inside. The result is a cabin that is not distorted when viewed from either

the outside or inside Figure 3-15(b)). All of these techniqaes create a three-dimensional

light shaded jeep object, that can be viewed from another vehicle or a missile (Figure

3-16).

,

a

'a. b.

Figure 3-15. Jeep Cabin Drawing Order

I 53

I %

0

0

a,.

N

N.
N

r~p

-t.1'

S.

St

'V-t",a.,

4,
Si

3. Truck

The truck is the most complicated three-dimensional object drawn in)ti

* * study, consisting of seven parts: engine-, cabin inside and outside, tailer, he.dihs

taillights and tires (Figure 3-17). The drawing of all these parts is ordered.

Cabin Outside

* Headlights0

Engine

1Figure 3-17. Truck Parts

55

N.. - -- - - -A N", -

- - - .- ~~.L-t-%<, 9.~ w$. W~~wU.- -A. v. . wV- rV V~ -UN - V-X

The drawing order for the engine, cabin and trailer has to be done in such a manner as to

display an undistorted view from both the front and top of the truck. This was achieved

by first drawing the truck's trailer front, then the truck's engine and cabin (Figure 3-18).

The cabin and engine parts paint over the truck's trailer when viewed from a front aspect,

and the cabin paints over the engine when viewed from above. The lights and cabin were

drawn in exactly the same manner discussed above for the jeep.

• "" "Front of Trailer

m ~Cabin"

0%0

* Engine

Figure 3-18. Engine, Cabin and Trailer Drawing Order

56

A

5% %

f- Z.
5' .

.g.J

The trailer and tire parts required some additional drawing techniques not

previously discussed. There are six tires used in drawing the truck, two front tires and

-.- four rear tires. The tire is the same one used for the jeep. Each front tire is rotated,

translated and drawn after its respective side of the engine is drawn. The rear tire sets are

also drawn after their respective sides of the trailer (Figure 3-19).

To eliminate the distortion of the inside sections of the tire that show

through the right side of the trailer and engine, the color of the right side of the truck was

selected to blend with the tires. An additional drawing distortion also occurs due to the

trailer being drawn after the cabin. The right wheels paint over the left side of the engine

when the truck is viewed from the left side (Figure 3-20(a)). This distortion was

eliminated by drawing polygons over the distorted view after the right rear tires were

drawn (Figure 3-20 (b)). All of these techniques create a three-dimensional light shaded

truck object that can be viewed from another vehicle or a missile (Figure 3-21).

V Figure 3-19. Truck Tire Drawing Order

57

.1*"

b.

Figure 3-20. Truck Tire Special Drawing Order

58

0~A

0

*~ Af.I:t

0

'p.

vi.
'4'.

S

.4'.

S
w
4.

I

Iigure 3 2 Jr a K 1 Z Pit it K

0
2

4 54)
'4/

4

0

4. Missile

The missile is a four-sided three-dimensional rectangular volume with a

nose cap and smoke trail (Figure 3-22). The missile is a simple object due to the sp-ed at

which it travels in the viewing volume. At speeds of greater than two hundred knots, the

missile usually appears as just a blur on the screen. No special drawing techniques were

implemented to create the missile object. The main body of the missile is drawn first,

followed by the nose cap and smoke trail. A full profile view of the missile, in a static

position is shown in Figure 3-23.

-. .

SmkeTrl

Nose
"]"'] Body

Figure 3-22, Missile Parts

60

k
,

°2.

[- -.L

S0.

0
.,",.'

"SP

. -

* U - -... ~

D. TARGET ANIMATION

Target objects are built during program initialization. After the objects have been

S•"constructed, they are animated to fit in the proper orientation on the terrain. For

example, a vehicle object's course and speed are used to redraw the vehicle each frame,

at a distance proportional to the speed it would have travelled in the time it takes to

refresh the screen. In addition to the speed and direction, a vehicle must be inclined to

go up or down a hill, and tilted to go along a banked surface of a hill. The techniques

used to animate and draw a target object on the terrain in real-time are performed in the

display loop, after the targets' speed and direction parameters have been initialized. The

algorithms used to perform these techniques are discussed in the following sections.

1. Initialization

The moving vehicle simulator uses two data structures to manage the

correct display of vehicles in the scene. A linked list of vehicle definition data is created

before the display loop begins, and is updated at each pass through the loop. Figure 3-24

depicts this structure. All of the information needed to transform a vehicle object to the

correct position and orientation on the terrain is contained in the corresponding record in

the linked list. Before the display loop begins, one graphical object is created for each

type of vehicle. The drawing commands in this one object are then used to draw every

vehicle of that type, instead of repeatedly adding drawing commands to existing objects,

as was previously done. This technique alleviates the need for deleting and creating

vehicle objects and improves the simulator frame update rate. The second data structure

is used to solve the hidden surface removal problem. In order to use the painter's

algorithm, the connection between grid squares and vehicles present in a grid square was

62

'

-S:

'FJ

typedef struct vehicle {

short t VEHICLE TYPE

float x X TRANSLATION

float y Yx TRA-NSLATION

float z Z TRANSLATION

short tilt ROTATION ABOUT X AXIS

float vrig ROTATION ABOUT Y AXIS

short inc ROTATION ABOUT Z AXIS

short gridx X CRID VEHICLE IS DRAWN IN

short. gridz Z GRiD VEHICLE IS DRAWN IN

float vel VELOCITY IN METERS PER SECOND

float cse CnMPASS COURSE IN DEGREES

float dist DISTANCE FROM DRIVEN VEHICLE

short hit FLAG INDICATING MISSILE HIT

float sx SCREEN COORDINATES WHERE ICON

float sy SHOULD BE DRAWN ON CONTOUR MAP

short i ARRAY INDEX FOR COMPATIBILTY WITH

struct vehicle ORIGINAL FOG-M SIMULATOR

-next POINTER TO NEXT RECORD IN THE LIST

} Vehicle

"vehl ist"

Fig)ire 'i 24 VOh) e io;, e r-j Data linked List

63

Y Y

* -maintained. A single two-dimensional array is created, with each element corresponding

to a grid square, and with each element containing ; list of pointers to records in the

vehicle definition list. An element vehgridlZ]lX] in this array has pointers to definition

data for only those vehicles that should be drawn immediately after grid square Z,X is

drawn. These individual lists are maintained in sorted depth order, thus solving the

hidden surface oroblem. An example is given in Figure 3-25. Four vehicles have been

defined, creating the linked list vehlist of four vehicle definition data records. The

vehicles are situated in grid squares Z,X and Z,X+2, in the arrangement shown. A

reference point is required for depth sorting the vehicles before the vehgrid data structure

can be created. This reference point is the position of the driven vehicle selected by the

simulator operator, in this case vehicle 'B'. The linked list for vehgridfZ]JX] contains

first a dummy node, and then pointers to vehicles 'A' and 'C' that appear in grid square

Z,X. Each pointer is an address of a vehicle record in the vehlist data structure. Since

vehicle 'A' is further from the driven vehicle than vehicle 'C' in this example, it appears

first in the list. The linked list for vehgrid[Z]lX+2] is similar, with vehicle 'D' further
'-p

from vehicle 'B*. Drawing vehicles in a list correctly with respect to depth can be

performed by traversing the linked list from its head, performing the appropriate

transformations obtained from the definition data pointed to by the current node, then

actually drawing the vehicle object. Objects are drawn with hidden surfaces correctly

obscured if the list is maintained in a depth sorted order. A discussion of how vehicles

are drawn can be found in the Chapter III section describing function display _terrain(.

A discussion of how the vehgrid array is maintained is also found in Chapter III.

64

,V.

".-.W ...I-.;-.-;..-.0').'.-' -3-%).' ' '7" '.- '.'/ "-, -. -- ', ', .: ",b: " , . _ : -",

grid square Z,X grid square Z,X+2

D (

C B

vehicle driven
by sim~ulator operator

D0

"vehl ist! data structure

A C

vehgrid[Z] [X]

vehgrid[Zj [X+2]

Itvehigrid" data structure

Figure 3-25 Vehicle Grid At-ray

65

-'A."

2. Disla yl-ojg

All the functions used to draw the vehicles on the terrain are performed in

the display loop. The display loop consists of the following six functions:

read controlso:
read operator cont-oS to update driven vehicle parameters
view_ 'undso:
make field-of-vew calcuLatIunL for the driven vehicle
update veh poso:
update positions (f all vehicles on the terrain map

update vehiclegrid(:
select the grid in which each vehile should be drawn
updatelookposo:
update viewing orientation of the driven vehicle operator
display terraino:
draw terrain map and target objects on the display screen

The actual display loop co:dte coriists Df calls to the functions in the order shown. Each

pass through the display loop represents a single frame of animation. All of the functions

are optimized to pr(oduce a frame rate that simulates a real-time display. Each one of

these functions are discussed in deta' in the following paragraphs.

a. Read Operator Controls

f-uinction read contrls) (Figure 3-26) allows the operator to

interact with the program in real-time. The operator controls the driven vehicle by

entering a course and speed, changing the viewing direction and changing the

magnification of the scene viewed from the vehicle. All of these parameters are

controlled by using either a mouse button or the dial box. There are eight knobs on the

dial box that can be initialized and used as parameters for any graphics process. Five of

* these dials are used to control vehicle speed and course, driver tilt and line-of-sight look

directions, and a color or black and white display (Figure 3-27).

66

rvtk ML v'e n, I I

loat k'iO k k-

IW jf Tyicu-4 ' t J', 7).K1 -Xit,

it (cxi'i ,c "ti N)L S Ft
'fox (i0 1O 1 1\~ 'ti's D-)LITAFOV;1

1 'W di~ I it tv o I, W~ lra" using a
gre\N a(A

Sei',a!u.A or D

*tilt DIOR S '1 "ENS. / UL head up anid down ~
r Cang th sped usin ['[! If the spee~d tot erci mead the course

fro--m DIALI) *,
driven-z'vel = (fotgiautrLIL SPEEDSENS):
if(drien'>vel 7>0)O
drve->,: sC = loatigx. dWr DIALO? DIRSENS:
deltxsedcccg= driven >-cse I&;sced.
if (drrven->cse >= kY 0,
dnvrn->cse = N%)10: c~a'iu~IA fj wn~dic-crISN)

PO 6t D!* DI 1' 1" in 1)~ ?0 1IP SF N S

el-se it (driven- #sccw
dnvcn-An : ["+ : i1,t .il)tnrk oi Al inCft cl rk vcn'>,.ctDIRSENS),

elSC delaL3 Wk-'

I sor t i-I, p: ti,)nevti' itt r 'itfl

17

U0V -W 6* V .W"-V 1 171. . w

if(deltacsedeg 0)t
lIookdeg= lIookdeg + deltacsedeg,

if(lIookdeg >= 360.0)t
lIookdeg - 360.0; set~aluato~r(DIAL 1 ,(int)(*Iookdcg DIRSENS).

(int)(-360*DIRSENS), (int)(7 20* DIR SENS));

eLse ift ' lookdeg < 0.0)
Olookdeg += 360.0: setvaluatog(DIAL. I,(int)(*lookdeg* DTRS ENS),

(int)(-360*DIRSENS), (int)(720*DIRSF.NS)i;

else sctval uator(DIAL 1, ,(int.ookdeg*DIRS EN S),(in t)(- 360* [IRS ENS),
(int)(720* DIRSENS));

setvaluator(DLALL,(n)(lascsedeg*DIRSE-NS),(int)(-360*DIRSE-NS),
(int)(720*DIRSENS));

lookdeg = (float)getvaluator(DIAL 1) / DIRSENS:
if (*l()()k(jg >= 360.0)
*lc~odeg - 360.0; setvaluator(DIAL I,(int)(*lookdeg*DIRSENS),

(int)(- 360* DIR SENS), (int)(72()*DIRSENS));

if (*Iookdeg < 0.0)
*lookdeg += 360.0;

d, setvaluator(DIAL 1 ,(in t lookdeg* DIR SENS),(int)(- 360* DIR SENS),
(int)(720 DIRSENS));

*iookang=(*Iookdeg <= 900)? DTOR*(90.0- *lookdeg): DTrOR*(450.0. *lookdeg):
drivcn->ang = (driven->tse <= 90.0) ? DTOR*(90.0 - driven->cse)

DTOR*(450.0- driveni->se);

Figure 3-26 (Conti nued). Reading Operator Controls

68

0%
r -

.. a A A<*(A'jp Ni$

- . .

tIIt colo

.,.., course view

Figure 3-27. Dial Box

The use of the dial box requires initializing each dial to a

-- parameter, with an upper and lower bounds and a sensitivity setting if desired

S(servaluator(DIAL#,parameter,lower bound,upper bound,sensitivity)).

The dial outputs a parameter by the function getvaluator(DAL#).

Two mouse buttons are used to control the apparent magnification

* of the viewing volume. For every cycle of the display loop that the mouse button is

depressed, the field-of-view is changed five degrees. Depending on the mouse button

that is depressed, the field-of-view is either increased or decreased. The mouse button is

sampled by the function getbutton(MOUSE#).

These controls allow the operator to drive a vehicle over any

portion of the terrain, selecting any view out of the vehicle. These valuator inputs are

constrained. The field-of-view is limited to fifty-five degrees to minimize the number of

69

LK, N

polygons that have to be drawn. In adition, the driven vehicle's course cannot be

changed if the vehicle is not moving. These constraints are discussed in the section

L.upvehpos() and are implemented to provide more realistic moving vehicle dynamics.

b. Define the Viewing Boundary

Function viewhounds() (Figure 3-28) uses the field-of-view and

view direction, entered by the operator in readcontrols(, to compute the intersection of

the right and left sides of the field-of-view with the terrain map boundary (Figure 3-29).

These right (grx,grz) and left (glx,glz) coordinates are used by the displayterrain()

function to draw only the polygons that are in the field-of-view.

0

view_bounds(lookang,fov,glAxglz,grxgrz)
Coord *glx,*glz,*grx,*grz;
float lookang;
short fov;

extem Vehicle *driven; /* pointer to the driven vehicle /

float halffo, = DTOR*(float)(fov+50)/20.0; /* half of the field-of-view */
float viewr = lookang-halffov; /* right half of field-of-view */
float viewl = Iookang+halffov; /* left half of field-of-view 0/

/* left intersection points of the field-of-view and map boundary */

intersection(driven->x,driven->z,viewl,&*glx,&*glz);
O

,. right intersection points of the field-of-view and map boundary */
intersection(driven->x,driven->z,viewr,&*grx,&*grz);

Figure 3-28. Define the Viewing Boundaries

-. 70

B'..-

0,

.,S
'S

.. ,%.
'-

* Contour Grid Map

00

wwPlook angle

z

x

Figure 3-29. Viewbounds

71

INA

%p

4

c. Update the Vehicle Positions

Function update veh_pos() (Figure 3-30) updates the position and

orientation of all the vehicles in the vehicle list constructed during the initialization

process. Each vehicle in the list has the following attributes:

x, y, z positions
velocity
course
type (TANK, TRUCK, JEEP)
distance from the driven vehicle
tilt angle
incline angle
hit by a missile (WRECK)

The values of these attributes maintain a vehicle's current location on the terrain map, its

speed and course. The algorithms used to compute these attributes are discussed below.

(1) Speed and Direction. The vehicle's speed is implemented by

translating it across the terrain at a rate proportional to its velocity. To compute the new

translation position, the old position is added to the distance the vehicle travels in one

frame. The distance the vehicle has travelled is first calculated.

distance = velocity *frame rate

Then the new positions are calculated by taking the sine and cosine of the course

direction times the velocity and adding it to the old position.

x_newpos = xoldpos + cos(course) * distance
z_newpos = zoldpos - sin(course) * distance

The vehicle is then translated to the new coordinates (Figure 3-31). This translation also

Ianimates the direction that the vehicle travels, since the new translation position was

derived using the vehicle's course.

q 72

6%

updateyvehpos(elapsedsec)
float elapsedsec; f* time to do one frame *

extern Vehicle *vehlist,*driven;
float gndlevelo,sincoso;
extern Boolean stall;

Vehicle *temp;
float sine,cosine,distance;
float axayaz; /* incline point coordinates *

float tx,Ly,tz; f* tilt point coordinates ~

temp:=vehlist;
while(temp!=NUJL) { /* calculate new x,y,z position on the terrain ~
sinie=sincos(temp ->ang,&cosine);,
distance= temp->vel * elapsedsec; f* distance travelled in one frame *

0 temp->x += cosine * distance; /* new x coordinate *

%:tenip->z - sine * distance; f* new z coordinate *

/* calculate incline x and z coordinates ~
ax = temp->x + MiETERANDHALF *cosine;
az = temp->z + METERANDHALF *sincos(((temp>->cse - 90.0) *DTOR),&cosinc);

/* calcu.late tilt x and z coordinates *

sine = sincos(temp->ang - HALFPI, &cosine);
tx = temp->x + METERANDHALF *cosine;
tz= temp->z - METERANDHALF * sine-

1* compute tilt and incline y coordinates and add *

/* the height to raise the vehicle above ground/
switch(temp->t)
case TANKS: temp->y = gnd-lkvel(temp->x,-teinp->z) +TANKGNDHT;

ay =gnd-level(ax,-az) +TANXGNDHT;
ty gndjlevel(tx.-tz) + TANKGNDHT;

'A- break;
6 case TRUCKS: temp->y = gnd-level(temp->x,-temp->z) + TRUCKGNDHT;

ay = gndjlevel(ax,-az) + TRUCKGNDHT;
ty =gnd-level(tx,-tz) + TRUCKGNDHT;

-, break;
"p case JEEPS: temp->y = gndievel(temp->x,-temp->z) + JEEPGNDHT;

ay = ,nd-level(ax,-az) + JEEPGNDH-T;
ty gnd.-level(tx,-tz) + JEEPGNDHT;

-. break~,

temp->inc =(short)(asin((ay - temp->y)/METERANDHALF) * RTOD) 10;
temp->tilt =-(short)(asin((ty - temp->y)IMETERANDHALF) * RTOD) *10;

Figure 3-30. Update Vehicle Positions

'S. 73

A

%
z

ZN
ALL

switch(temp->t) (/* turn vehicle away from steep hills /
case TANKS : if (temp->inc >80) f* 8 degrees for a tank /

slowturn(&temp->ang), f turn vehicle 10 degrees*/
break;

- .. x"case TRUCKS: if (temp->inc >100) /" 10 degrees for a truck /
slowturn(&termp-ang)i' turn vehicle 10 degrees*/
break;

Jca.e EEPS itf (Lemp->inc >10) /" 15 degrees tor ajeep */
slowturn(&temp->ang; /' turn vehicle 10 degrees*/
break;

- stall = FALSE,
.'V. . switch(driven->) { /* stall the vehicle if the hill is too steep '/

case TANKS : if(dnven->rc > 80) /" 8 degrees for a tank */
stall = TRUE; break;

case TRUCKS: if(dnven->inc > 100) /* 10 degrees for a truck */
stall = TRUE; break;

case JEEPS : if(driven->inc > 150) /* 15 degrees for a jeep 0/
stall = TRUE; break;

* / if a vehicle reaches within 200 meters of map boundary turn it around */
if((temp->x >(TENKM - TWOTENKM))II(temp->x < TWOTENKM)){
slowturn(&temp->ang); / turn vehicle 10 degrees*/
if (utmp == driven) /" if the driven vehicle stall it until it backs up */
stall = TRUE;

else if((temp->z < -(TENKM - TWOTENKM)) II (temp->z > -TWOTENKM))(
slowturn(&temp->ang); /* turn vehicle 10 degrees*/
if (temp = driven)
stall = TRUE;

/* if driven vehicle is stalled set the speed to zero until it backs up /
if ((stall == TRLUE)&&(drivcr-> vel >= 00)
setvaluator(DIAL2, 0 ,UPPERSPEEDBDLOWERSPEEDBD);
driven-> vel = 0.0;

temp=temp->next; /0 gow the next vehicle in the list */

temp=vehlist;
while(temp?=NULL) (/* calculate distance from the driven vehicle /
Lemp->dist=(float)hypot((long float)(driven->x - temp->x),

hypot((Iong float)(driven->y - temp->y),
(long float)(driven->z - temp->z)));

temp=temp->next;

Figure 3-30 (Continued). Update Vehicle Positions

74

%.%

distance =velocity frame ratez

flew p08

distance

sin(course) *distance

course
old poas

cos~course) distance

-- p

Fiu -3.Vhcl pe

*475

-4W
%

0

All the vehicles heid in their preset direction until they reach a map

boun 'ry or a steep hill. If a vehicle is not being driven and reaches a contour map

boundary, it turns to the left, back into the center of the map by the function slowturn().

This function adds ten degrees to the vehicle's course each frame that it is within the two

1 tenths of a kilometer of the gr-id map's boundary.

(2) Hill Traversal. All the vehicles encounter a hill at some time while

traversing the terrain. To display the view of the vehicle object on a hill, the object must

be oriented in both the incline and tilt diizctions. Two angles inc and tilt are computed

by defining points one and a half meters away from the center of the vehicle's rotational

axis. The x, y and z coordinates of this point are then calculated.

x = temp->x + METERANDHALF * cos(course);
tz = temp->z - METERANDHALU sin(course);
ty = gnd level(tx,-tz) + TANKGNDHT,"

The corresponding incline and tilt angles are computed by taking the difference (deltay)

between the rotational axis y position and the points (ty or ay) y position and then calling
:,t. -. -

inc = arcsin(deltay/METERANDHALF);
tilt = - arcsin(delay/METERANDHALF);

Some of the terrain is too steep for a vehicle to traverse. The vehicle

should either stall or turn to a less steep direction when attempting to go up a steep hill.

If a vehicle's incline angle reaches a steepness threshold, the vehicle is turned to the left

ten degrees for each frame of motion. This is accomplished by a call to slowturn(),
Ob.

-- which adds ten degrees to the vehicle's course. As long as the vehicle's incline angle is

*."- greater than the threshold, it keeps turning to the left. The driven vehicle is not turned

76

O,'

-'Saysz

dela

Incline arcsin (deltay/1.5);

til =arcin(dlta/15)

Figr~3-2.InlietndTi t muation (dlay1.)

Si..

5%~ 77

since the driver should be able to recognize and avoid steep hills. If the driven vehicle

exceeds the incline threshold, it stalls and its speed is set to zero. The driven vehicle can

then only be removed from the stalled condition by backing up and turning away from

the steep hill, until the incline angle is less than the threshold.

Function update vehpos() is implemented using simple logic and

.-. •mathematics. To reduce the time required to perform trigonometric functions, all the

. values for arcsine, sine and cosine are obtained by accessing an array consisting of 3600

entries. Once all the vehicle parameters have been computed, each vehicle must be

assigned to a specific grid square.

d. Updating the Vehicle Grid Array

0i: Function update_vehicle _grid() in the display loop manipulates the

." vehgrid array for correct vehicle object hidden surface removal (Figure 3-33). Recall

'*"'" that the vehgrid array has one element for each grid square, and that each element of the

array is essentially a list of vehicles that should be drawn after the grid square is drawn.

Two characteristics of this data structure are examined at each pass through the display

loop. The pointers in a vehgrid array element linked list are sorted in order of distance

from the driven vehicle to maintain correct vehicle drawing order within that grid square.

The routine also determines which particular grid square a vehicle should be drawn after

* (which list it should be in) based on its proximity to a grid square edge, and the direction

of the line-of-sight. This allows a vehicle to be drawn only once, regardless of its

location on the terrain.

A vehicle situated near the center of a grid square is always drawn

in the grid square it occupies. A vehicle near a grid square edge, however, can be drawn

78

'.AA

#define WEST 0x8
#define EAST 0x4
#define SOUTH 0x2
#define NORTH Ox I

update-vehicle-grid(lookang)
float lookang;

extem Gridnode *vehgrid[NUMW GRDS][NUMXGRIDSI;
extern Vehicle *vehlist, *driven;

Vehicle *temp;
short ovgetoverlapo,quadrantnewxgridnewzgrid,oldxgrid,oldzgrid;
float x,z;

*'- quadrant = (short)(lookang/HALFPI); [quadrant driver is looking in. */
temp=vehlist; /* head of the definition data list. *
while(temp! =NULL) (/* for each vehicle in the list do... */
x = (temp->x); [* get vehicle's current x position */
z = -(tCmp->z); ...and z position
oldxgrid= temp->gridx; /* get grid square indices vehicle was */
oldzgrid= temp->gridz; [4 last drawn in.
newxgrid=(short)(x/TENTHKM); [get grid square indices of vehicle's */
newzgrid=(short)(z/TENTHKM); /* current position. */
ov = getoverlap(temp->t,z,x,newzgrid,newxgid);

switch(quadrant)
case 0: if(ov & WEST) newxgrid--; [* draw vehicle 1 grid square to west */

if(ov & SOUTH) newzgrid--; P ... I grid square to south */
break;

case 1: if(ov & EAST) newxgrid++; [* ...etc. 4/

if(ov & SOUTH) newzgrid--;
break;

case 2: if(ov & EAST) newxgrid++;
if(ov & NORTH) newzgrid++;

* break;
case 3: if(ov & WEST) newxgrid--;

if(ov & NORTH) newzgrid++;

assignwgrid(tempoldxgrid,oldzgrid,newxgrid,newzgrid); P move the node */

- temp->gridx=newxgnd; / update definition data record to reflect /
temp->gridz-newzgrid; /* which grid square this vehicle is now /
temp=temp->next; /* drawn in */

Figure 3-33. Determining Where to Draw a Vehicle

79

IO,

.0,,

in the grid square it occupies or in an adjacent one, depending on the line-of-sight.

Update vehicle grid relies on the algorithm used in function display terrain() when

determining in which list to place a vehicle (Figure 3-41 page 91). Display terrain()

draws terrain polygons and vehicle objects in a different order according to the direction

of the line-of-sight. For purposes of update_vehicle gridO calculations, the line-of-sight

can be in one of four quadrants: the first quadrant extends from zero to one-half pi

radians counterclockwise (ninety to zero compass degrees), the second quadrant extends

from one-half pi to pi radians counterclockwise (zero to 270 compass degrees), and so on

for the remaining two quadrants. Routine displayterrain() itself checks for presence of

the line-of-sight in one of eight octants, with an octant being one-fourth pi radians

(forty-five degrees). Displayterrain() drawing order is summarized in Table 3-1. An

example with a line-of-sight in the first quadrant is given in Figure 3-34. Figure 3-43

(page 95) shows the eight octants applicable for display terrain() calculations.

TABLE 3-1 DRAWING ORDER OF THE PAINTER'S ALGORITHM

Line-of-Sight angle Quadrant Drawing Order

0 < LOS < 90 0 North to South, East to West
90 < LOS < 180 1 North to South, West to East

180 < LOS < 270 2 South to North, West to East

270 LOS < 360 3 South to North, East to West

* A four bit "overlap" code is used to determine which edges a

vehicle is near. Figure 3-35 shows routine geroverlapO that determines the overlap

value. The appropriate bit of the overlap code is set if a vehicle is close enough to a grid

square edge that it might overlap the adjacent square, A vehicle's proximity to an edge is

obtained from the difference between its X and Z coordinates and those of the southwest

""" comer of the grid square it occupies. Values above or below certain thresholds indicate

80

0d

.. o-•

z
First quadrant

0-go degrees N

First octant

1 0-45 degrees

line-of-sight

Fil2fVe

riumber~~ ~1 i3iaedawn re

141

Sx

north~~~~. tosuh as ows

short getoverlap~type, z, x, zgi-id, xgrid)
short type, zgrtd, xgrid;
Coord x, z;

float mini, max, cdi, dz;
short zgrid, xgrid, ova);

if(type==TAJNKS) min=4.82; /* how close the center Of the vehicle is to1
if(type=TR T CKS) mm= 4.54; /* the west or south grid square edges when ~
if(type=--JEEPS) min= 1 ."; /* the vehicle begins to overlap the *

the adjacent grid square.
max = TENTH KM - min; /*' same as above, for north anid east edges. ~

dx = x - TENTHKM% * (float)xgrid; /* dx = how close the vehicle actually *

dx= z - ITNTHKM * (fiOat)7grid; I* is to west edge of the grid square *

if(dx < mn) ov WEST: /* vehicle overlaps thewestern grid square
if(dx > max) ov EAST; eatern grid square

*if(dz < min) ov I= SOUTH; ... southern grid square *
f(dz> max ov I= NORTH 1* northern grid square

return(ov),

Figure 3-35 Overlap Code Bits

some portion of the vehicle may overlap another grid square. These thresholds are

different for each venicle. The minimu m threshold value for a tai- s 4.82 meters for

example, which corresponds to the diagonal distance from a tank center to one of its

corners. Threshold values are illustrated in Figure 3-36.

82

-, .if~x > ax)ov EAS; , ...eastrn rid quae %

.82

4.8 4.54
meters meters 1.99

meters

TANK TRUCK JEEP

dx = xl - xO

dz = zl - zO

min < dx < max

min< dz < max

maX

(x zi)
min

dx

SX

d z
(xO,zO)

• "'" - min

max
e

Figure 3-36 Proximity to a Grid Square Edge

83

I6s

S.

tV 7 W

Although a threshold is reached, a vehicle is drawn in the adjacent

square only if it is near certain edges. It is the drawing order of the painter's algorithm

that determines these grid square edges. They are shown in Table 3-2 for each quadrant.

TABLE 3-2

Quadrant Grid Square Edge

0 South, West
1 South, East
2 North, East
3 ."3North, West

In update_vehicle_grid), the result of a logical AND of the overlap code bits and a bit

representing one of the edges in Table 3-2 is used to determine the vehgrid list where a

* vehicle is found. Both bits must be set for a vehicle to be moved from one list to another.

In Figure 3-37, the line-of-sight from the driven vehicle 'A' is in the second quadrant.

With this line-of-sight, vehicles near a southern or eastern grid square edge are drawn

after the adjacent grid square in that direction, instead of the grid square they occupy.

This is the case for vehicle 'B' in Figure 3-37, near the southern edge. Since the

painter's algorithm draws grid square four after grid square three, the part of the vehicle

- overlapping the southern grid square is overdrawn by grid square four if the vehicle is

drawn after the grid square it occupies. To correctly draw the vehicle and both of the

* grid squares it overlaps, the vehicle must be drawn after grid square four. Routine

update vehicle-gridO and getoverlapO correctly determine the appropriate new vehgrid

indices for this technique of hidden surface removal.

84

A.

. d V .. 4't*% .'A.A.K..A.K~.'.::"P'''KK ~ ~'~ ':~ ."'~.

4L.

line-of-sight vehicle is drawn in

in second quadrant adjacent grid square if

near SOUTH or EAST edge

- \,

I5
min 3 dz < min=> overlap

B =SOUTH

- A

2 4 6

" Vehicle 'B' is near SOUTH edge =>

draw it after grid square four

Figure 3-37 Drawing in an Adjacent Grid Square

The value obtained for the new Z and X grid indices is used by

routine assigngridO to move nodes in the vehgrid lists to their correct location. This

routine consists of linked list management functions to search, remove and insert nodes

in the vehgrid lists. Nodes are always placed in a list in depth sorted order.

85

S.,.e

4. * ..-. Pd J .t.~*V -~- X

An example clarifies the above discussion. Figure 3-38 shows the

situation for two vehicles, with vehicle 'A' being driven. The upper arrangement shows

the vehicles at the beginning of one pass through the display loop. Vehicle 'B' is located

- . near enough to the center of grid square ZX+l that it does not overlap any adjacent

squares. The lower arrangement occurs after vehicle positions have been updated.

Vehicle 'B' is still located in grid square ZX+1 but now overlaps the western edge.

r-", Since the line-of-sight is in the first quadrant, vehicle 'B' is drawn after grid square Z,X.

The node for vehicle 'B' is moved from the vehgrid[ZIX+l] list to the vehgrid[ZI[XI

list based on an overlap code of "WEST". Again, insertion into the new list is done with

the key being distance from the driven vehicle.

e. Updating the Viewing Orientation
Function update lookposO (Figure 3-39) computes the reference

point coordinates (px,py,pz) towards which the viewer is looking. The px and pz

coordinates are calculated by computing the look distance in the line of sight, then taking

the sine and cosine of the lookangle and adding the result to the viewer's x and z

positions (Figure 3-40).

,.*px = driven->x + osine(lookang) lookdist
*pz = driven->z + sine (lookang) * lookdist

The distance the viewer is looking in the line-of-sight (lookdist) is calculated by taking a

deltay value and dividing it by the tangent of the tilt angle.

lookdist = deltay/tan(tilt)

The lookdist is then normalized to a value less than the maximum look distance

threshold. The py coordinate is calculated based on the viewer's tilt angle. If the tilt

86

N0 -7

kr N w -W W- k W W 6r. UV V. L- WV LW *.
VIN w

A

line array
of

sight

grid square Z,X overlap =OxO

_ _ _ _ _ _B A

of
sight

A BZ [Zfl j

overlap = x8 (WEST)

W. (b)

Figure 3-38 Update Vehicle Grid Example

87

-AM

",.

update look_pos(lookang,u lt,px,py ,pz)

float tiltlookang;

", Coord *px.*py,*pz; / reference coordinates */

extem Vehicle *driven, / pointer to driven vehicle */

float lookdist; /* distance ahead of viewer */
float deltay; /* height of eye */
float sine,cosinesincos0;

/0 compute distance ahead of vehicle we are viewing */
deltay = dnven->v - MIDELEV;

if (tangent(tilt)== 0.0) lookdist deltav /0.01;
else lookdist = deltay / ,angent(tilt);

if (lookdist < 0.0) lookdist = -lookdist; /* take care of tangent sign /
if (lookdist > MAXLOOKDIST) lookdist = MAXLOOKDIST;

, compute reference coordinate where viewer is looking /
sine=sincos(lookang,&cosine); /* get sin & cos out of the array */
*px = driven->x + cosine * lookdist;
*pz = driven->z - sine * lookdist;

if(tilt > 0.0) *py = 2.0 * driven->y;
else *py = 0.0;

Figure 3-39. Update the Look Position

'S.

0

p x~y~pZ ... Iookdlstance

sin (looking Is)
-~*lookdlstanc oknlI

iee

-%'p

r

Fcs2-"an le ln(Iooksnnglo) ... z..

,Figur 3-0 Calc(ulkantin) thook Posnci tion

'- 2

.1'

-

1 89

N.

p. .'"' - ' -- ' p '~ 4

'- 5 U %'U UU.5 ~ Figre -4 . 5,cultin the 'oo Position 5S*'

angle is above the horizon, py is set to look slightly above ground level. If the tilt angle

is zero, the viewer is looking in the direction of the horizon and py is set to zero. The

reference point is required to define the line of sight for the function lookat(driven-

. >x,driven->y,driven->z px,pypz,twist). This function specifies the viewpoint (driven-

>x,y,z) and the reference point (px,py,pz) along the line of sight. The twist angle rotates

the line of sight about the z axis. Once a viewing reference point is defined, the terrain

and vehicles can be drawn.

f. Displaying the Terrain Map and Vehicles

Function display terrainO draws the terrain map and vehicles in

the viewing volume (Figure 3-41). The viewing volume line of sight, orientation and size
@

are defined by the viewing transformations lookatO and perspective(). The

perspective(fov,aspect,nearfar) viewing transformation uses the field-of-view and near

and far clipping planes to define the viewing volume drawn (Figure 3-42). The aspect

" represents how far the viewer sees in the x direction as compared to the y. For example

an aspect of 3 means the viewer sees three times as far in the x direction as in y. The

lookatO viewing transformation was explained previously.

The screen is outlined in black with the sky colored blue and a

ground plane of green. Only a 768 by 768 pixel square is used to display the scene.
@

The rest of the screen is used to provide the operator with the driven vehicle parameters.

After the scene has been initialized, the terrain map and vehicles are drawn. The details

of how this is implemented are discussed below.@

" 90

% %..4e - .-.

O-

displayjterrain(lookanggl t,glz,grxgrz, px, py, pz, toy,
tank jeep,truckjtik,intank, missilenetworking)

. Coord px, py, pz; /* viewing reference point */
Coord glx, glz, grx, grz; /* intersect points with map boundaries */

float lookang; /* viewing angle /
int fov; /* field-of-view */
Object tankjecp,truck, missilejunk, intank; /* display ob)ects */
Boolean networking;

extern Coord gndplane[4][31;
extern Vehicle *driven; /* driven vehicle pointer */
extem long gndplanecolor; f' color for ground plane /
extern float gridcoord[NUMTZR IDS I [NUMXGRIDS][2] [3][3];
extem float height of-eye[NUMVEHTYPES];
extern long gridcolor(NUMZGRIDSI(NUMXGRIDSI; /*cofor tor grid

squares */
extern Gridnode * vehgrid[NUMZGRIDS] [NUMXGRIDS];
extem Missile *msldata;

Gridnode *temp; /* temporary pointer to vehicles */
float startx, startz, stopx, stopz; Pstart and stop coord for scan lines */
short xgrid, zgrid /*x and z scan line grid indices */
short rotdir; /" rotation degrees */
float halffov = (DTOR * (float)(fov)/20.0);
float viewr = lookang - halffov;

* float view] = lookang + halffov;
float fight, left; /* right and left angles of fov */
float threshold; /* max diagonal look distance */
float x = (driven->x)/100.0; /* driven vehicle x grid index */
float z = -(driven->z)/100.0; /* driven vehicle z grid index /
float deltax, deltaz;
float tangento; f* array of tangent values */

Figure 3-41. Display Terrain Initialization

91
0.,
U-..

Sid
'

• ' I";"-"."- - ' '."•'- - - -- -- ", .-',-/'-"."---" ..-.-. , , -. -, ,,- '_ . . ".U,- ". ,--. , '.. - :- ",

viewport(0,767,0,767); /* set the portion of the screen for the scene*/

pushmatrixO;
color(SKYBLUE); /* color the sky blue */
clearo
ortho2(0.0, 1023.0,0.0,767.0); /* outline the screen in black */
color(BLACK);

K recti(0.0,1023,767);
popmatrixO;

pushmatrixo;
/ define the viewing transformations */

perspective(fov, 1.0,0.0,MAXLOOKDIST);

-* lookat(driven->x,driven->y + heightofeye[driven->t],driven->zpxpy,pz,0);

threshold = 20.0; /0 threshold for max number of grids drawn in LOS /

/* determine the direction of the line of sight */

if (lookang < 0.0) lookang += TWOPI;

55 ,/ lay down a green ground plane to paint the terrain over */
color(gndplanecolor);
polf(4, gndplane);

* ******************* Draw the Octant **************** */

/* code for a single Octant shown in Figure 3-44 below */

popmatrixo;

Figure 3-41 (Continued). Display Terrain Initialization
0.

% 92

0,

'b .-N.,

V. %

y

Sz

.. .. nd.th ne r n arclp i g la e
preclfov twstNearfa)

nerFarre~~yz

far =reference polnt(px,py,pz)
twist =0;

Figure 3-42. Viewing Transformnations

93

[.",- .V W-o W

(1) Scene Display. The least number of grid squares is drawn by breaking

the entire viewing circumference into eight parts or octants. The drawing order for each

-- octant is based on drawing the grid squares, from the furthest to the nearest, using a scan

--line algorithm (Figure 3-43(a)). The viewer's position is in the center with the direction

of the scan lines for each octant. As the field-of-view is changed, a different octant is

selected. For example, if the field-of-view is in the eighth octant, the scan lines are

defined by a startz and startx and then incrementing the startz until a stopz threshold is

reached. This is one vertical scan line as shown in Figure 3-43(b). The next scan line is

- drawn by stepping the startx position towards the viewer, and repeating the process.

Since each scan line is closer to the viewer and within the field-of-view, fewer grid

squares are drawn each time the scan line is moved. For each grid square, the upper and

lower halves of the terrain are drawn first, followed by any targets and the missile.

All of the octants are drawn using similar scan lines. Code for the

eighth octant is shown in Figure 3-44. All the other octants use the identical algorithm.

Note that the viewer's x and z positions are changed by one to draw the grid squares on

adjacent sides of the viewer's grid square. This technique ensures that all the grid

*" squares are drawn in the field-of-view.

After the entire scene is drawn, the vehicles in the viewer's grid

square are drawn again. This ensures that any vehicles in adjacent grid squares, that may

have been drawn after the viewer's grid square, are painted over by the viewing grid

;quare's vehicles. Once we have descibed the technique for drawing the scene, the

specifics on placing a vehicle on the terrain at the desired orientation must be discussed.

''.

,'.-:94

J P .. P

'. °

3rd Octant 2nd Octant

4th Octant 1st Octant

Viewer s position

5th Octant

6th~8t Octnt7thnctn

~'iewerSpositio

one scaalietz

Fiurt 3 Octant Scan Lin

Viw r' osto

ried-f i e 9I5p

I0.1111 T II

-4192 274 INTERACTIVE NITMORtED MOVING PLATFORM SINULNTmCIDU
NAVAL POSTGRADUATE SCHOOL MONTEREY CA

7 4 1DSOLIVER ET AL. FEB 88 NPS52-88-042 HIPR-ATEC-48-47
77NLSSIFIED F/G 16/2 U

l' w

if (lookang > SEVENQTR_PI) (/ The eighth Octant */
star=x grx/lO0.O; finitialize start and stop /

starpz -gfrWlOO.0.,% ; stopz = glz/100.0;,

if (starz < 0.0) startz = 0.0; /* ensure start and stop are on map */
if (stopz > 99.0) stopz = 99.0;

startx = x + threshold; /* set the max number of grids drawn in
the depth of field *I

% -if (startx > 99.0) startx = 99.0;

zgrid = (short)startz; /* first z grid to be drawn scan line

while ((startx >= x) && (startz <= z)) (/* repeat until at the view pos*/

xgrid =(short) statx; / set x scan line /

color(gridcolor[zgridj[xgridJ); /* color for the grid square "1
polf(3.&gridcoord[zgrid)[xgrid](O][O][O]); /* draw the grid square /

* polf(3,&gridcoord(zgridl[xgrid](1](0](0]);

/*******************Draw the vehicles **** *********/

/* code shown in Fig. 3-45 */
/5 ****************** Draw the missile ****************

/0 code shown in Fig. 3-49 0/

zgrid += 1; /0 goto the next grid square on the scan line */

if (zgrid > (short)stopz) (/0 completed a scan line /
startx start- L.O: / set the next x scan line/

deltax = startx -x:
startz = z - (deltax * right);
if (startz < 0.0) startz = 0.0;

if (lookang < AboveX-axis)
stopz = z - (deltax * left);

_. else
else'stopz = z + (deltax * left);

,, W if (stopz > 99.0) stopz = 99.0;

.55.., zgnd = (short)startz; I5set the first z grid on the next scan line*/

Figure 3-44. Displaying an Octant

',..%
% %.%

.55t,

9mJ'

.. '.9.

(2) D I b- . a gd u arJ W

(2) Vehicle Display. All the vehicles in a grid square are sorted in a

linked list based on their distance from the viewer. After drawing the terrain of a grid

square, the vehicles are drawn by traversing the linked list that is associated with the grid

square's vehicle pointer. Because all the vehicles in the list are sorted by their depth in

N.- the viewing volume, proper drawing order is obtained (Figure 3-45).

Each vehicle must be drawn by first performing all the rotations, then

translating it to a position within a grid square. Prior to any rotation, each vehicle object

is drawn about the origin of a three-dimensional axis (Figure 3-46).

temp = vehgrid(zgrid][xgrid]->next; /*assign pointer to veh grid pointer*/
while (temp != NULL) { /*update every vehicle in the list */

pushmatrixo;
rotdir = (short)(10.0 * RTOD * temp->vehptr->ang);
translate(temp->vehptr->x ,temp->vehptr->y,temp->vehptr->z);
rotate(rodtir, 'Y'); /* rotate to course */
rotate(temp->vehptr->inc, 'Z'); /* incline the vehicle */
rotate(temp->vehptr->Lilt,'X'); /* tilt the vehicle 0/

switch (temp->vehptr->t){
case TANKS : if (temp->vehptr--driven) callobj(intank);

callobj(tank); /* draw the tank */
break;

case TRUCKS : callobj(truck); break; /*draw the truck */
case JEEPS : callobj(jeep); break; /*draw the jeep */
case WRECK : callobjounk); break; Pdraw the wreck */

popmatrixo;
temp = temp->next; /* goto the next vehicle */*}

Figure 3-45. Displaying the Vehicles

97

./ ,,- - -

.0

'q

X

5%

,-.

, 2 Figure 3-46. Vehicle Axis

'p0

,--' To orient a vehicle object to the terrain, it is inclined by rotating it
~about the z axis and tilted by rotating it about the x axis.

i ~rotate(temp- >vehptr- >inc, 'Z')

• rotate(temp- >vehptr- >tilt, 'X')

.. €. In addition, the vehicle must be oriented to point in the direction it is

ON . heading. This is performed by rotating the vehicle object about the y axis. Note that all

O.,

*,x

.A J-

N:

Tp -0 7 V.V 1..TV

correct orientation at its new position on the terrain. These transformations are

performed on the vehicle object in the following manner.

translate(temp- > vehptr- >x,temp- >vehptr- >y ,temp- >vehptr- > z);
rotate(rotdir, 'Y');
rotate(temp->vehptr->inc, 'Z');
rotate(temp- >vehprr- >tilt,'X');

- - callobj(vehicle),

If the driven vehicle is a tank, another object called intank is drawn

,* after the tank object. The intank objecL simulates the view the tank commander sees

looking out of the tank. This view has slits bordered in black with a view of the top the

gun barrel. A view from within a tank is shown in Chapter V. The intank object is

drawn only when the driven vehicle is a tank. This is done to save time, since the

polygons of the inside of the tank cannot be seen from the exterior of ,ie tank.

(3) Missile Display. If the vehicle system is networking with another

workstation that is running the missile simulator, the missile's course and position are

passed via a communication link. When the grid square containing the missile is

* . scanned, the missile object is rotated about the y axis to its course then translated to its

position within the grid square (Figure 3-48).

99

y y

x x

calobJjee);rotate(tilt, X');

-~z z

step 1 Step 2

y y

xx

Z rotate(Inc, 'Z'); rotate(course, ')

z z

Step 3 Step 4

y

trafl:Ite(xpos,ypo,zpos)

z Se

Figure 3-47. Vehicle Course

I'. 100

if(networking)(/* if communicating with missile simulator */
if((msldata->gridx = xgrid)&&(msldata->gridz == zgrid))(

/*if missile is in scanned grid square*/
pushmatixo;

iranslaze(msldata->x,msldata->y,msldata->z);
rotate(msldawa->cse, 'Y'); /* rotate to missile course */
callobj(missile); / draw the missile /

popmatrixo;

Figure 3-48. Displaying the Missile

(4) Destroyed Targct Display. If a vehicle object has been hit by a

*missile, its vehicle type is changed to WRECK. The wreckage of a destroyed vehicle is

displayed as a pile of twisted sides by drawing a junk object instead of the previous

vehicle object when traversing the vehicle list in the function display_terrainO (Figure

3-49).

101
4.

S.

* -

2~

Ak

0

S

.*j.

S..

a

~

. W~.% .' ~*

",-2

IV. NETWORKING

To provide as realistic a scene as possible to the FOG-M simulator operator, the

targets he launches against must model real vehicles as closely as possible. This includes

modeling the dynamic characteristics of a vehicle in motion as driven by a human

operator. This realism was achieved by introducing a networking capability to the

simulator, allowing a second workstation to provide interactive control over the

0 movement of vehicles across the target area.

A. CAPABILITIES

The ability of the FOG-M simulator to receive information from an external

source, as described in Ref (11 and depicted in Figure 4-1(a), was never implemented.

The current study explored the use of 4.3BSD UNIX network capabilities to provide this

intended feature. In addition, the goal of this study was to implement the broader

capabilities of the system shown in Figure 4-1(b), to provide a single weapon console and

a single target console in a two-node network of IRIS workstations. In this system, the

. interactions of each operator with the program running at his console are reflected in the

opposite console. As the vehicle operator turns and accelerates his jeep, for example, the

missile operator sees a turning jeep speed up as it moves across the terrain.

Each console in this system can act in stand-alone mode or can communicate with

the other console. If networking is on, data and control information is exchanged

between consoles to allow the vehicle operator to see the missile in-flight and to allow

103

% P
"",- ",":"', .".-"/,-- '.,".4 ;'"",'~'2 ? ? - " ."-"-.".." '"_Y-.--- ' ' ' "- ',",'.

FOG-MVehicle

(a)

Figre4-SiulaorSyultems

(b

*~~~,~ 1, al ~

J.-

the missile operator to view interactiv-y!v controlled vehicles. The system provides for

repeated weapons launch against multiple targets and the ability of either operator to exit

from his simulator without affecting operation of the other console.

B. IMPLEMENTATION

This study was the first attempt at the Naval Postgraduate School to produce a

network of interactive, real-time moving platform simulators. Normal (blocking) socket

IO was chosen as the network communications protocol for two reasons. Familiarity

"- . with this use of the 4.3BSD UNL network session layer protocol was gained from the

success of several smaller projects. Using blocking 1/0 results in the simulators

operating synchronously, but it also aids in debugging the interaction of the two

"-N simulators. Since the normal result of reading an empty socket is for the reading process

to block, this fact was used to isolate an improper sequence of socket 1/0 attempts. An

- excellent discussion of the UNIX socket mechanism is found in [51.

S"The vehicle console must use the current position and orientation of the missile to

correctly render the missile image in the scene. Similar information is required by the

missile console for displaying targets that have been established by the vehicle operator.

* Since this exchange of data is inherently duplex in nature, a pair of sockets was chosen as

the mechanism to accomplish the transfer. The use of dedicated communication links in

each direction and tiie guaranteed delivery of socket stream data ensures the availability

and reliability of the necessary information,

The moving vehicle simulator was chosen to act as server to the client missile

simulator, although the arrangement could be reversed. Operation of each simulator in a

0.5

'- ';..".-;"";" ; . - - -' :" - ""- '.- --- -' '-.' -.. :"--. - . .,--, ' " ,- " .- , .,-:,",,-'- -.-- :105-,'-.-

networked mode require, the following steps in addition to those of stand-alone

" operation:

- initial set-up of the network
- initial data transfer
- display loop data transfer

..Initial network set-up involves calls to system routines to establish the network

data paths. Sockets are created to connect the workstations with a dedicated read path

., and a dedicated write path for both data and control information as indicated in Figure

4-2, for a total of four sockets opened by each simulator. Output to be sent to the other

console is always sent via a simulator's "outxxx" socket, and all input is received via a

simulator's "inxxx" socket. Failure to establish this configuration during initial network

set-up results in fallback to stand-alone operation, with no further networking attempted.

Data and control paths are different to maintain separation of function, and to allow the

possible use of different transmission mechanisms for each path in future versions of the

socket

outdata ___ a indata

indata L* - outdata

outcontrol -- incontrol
incontrol - outcontrol

- ETHERNET
FOG-M Moving

Simulator Vehicle Simulator

-. Figure 4-2 Network Connections

St 106

U - --.-.

n %,. % ... % %,- %j . % - ., - - , ., -,,-.., . . .- - ., . -,-. . - -- . - - -
, • * , '

simulator, The synchronous operation o(i the currvni, system i. ht be avoided by using
- ' ", "out-of-band" or non blking mechanis-is. This study did not explore these

Th is possdiyolihese

1he number, type. and other relevant information about the vehicles defined by

* the rnoving vehicle simulator o tratoi must be made known to the missile console before

its operator can launch weapotis against these targets (the sequence of steps used to

define a vehicle are outlined in the I ier's Guide of Chapter Vi. After initial network

set-up is completed, the FOG-IM console waits to receive thc- vehicle definition data

.71 before permitting missile launch to occur After the vehicle operator has defined the

vehicles of his choice tnd has selected the vehicle he v ishes to drive, routine

trarferdara,,i passes this initializ-ation data (Figure 4-3). The vehicle console then

waits for missile launch. After recetiing initialization information, the missile console

allows a launch to take place. The vehicle console waits for the launch event before

proceeding with the displ.iv Ioop to assure synchronization of the two programs at the

time of missile launch. A handshaking takes place after initial data transfer and before

the display loop begins to allow either console to exit fiora the simulation. This consists

of each console sending its intent to continue or exit to the other console, with

subsequent operation of the simulators based on the input received. If the missile

console were to quit, for example, the vehicle console could continue to run in stand-

alone mode.

Both programs enir their wep¢ctivc Wispla, ,.)ps to begin data exchange when

the missile is launched l)urinc. 1he oispldv loop, several key parameters can change.

The pK)sition and course of the driven veh,: ic can change it i;, speed is non-z7ero. The

10"7

, -..- '.- . , • . ..-. -... -- . . - . ,.r.- .. , .4 . . .- -,v .., , - , . '...

trWsferdM(numveh)
"S.- shor onycvhO;

,.' extern Vehicle *vehlist;
extern it outdata;

Vehicle *temp;
char outbufferl[10], outbuffer2[80];
int i;

for(i=0;i<NUMVEHTYPES;i++)

/* send the number of vehicles of this type /
'S sprintf(outbufferl ,"%f",(float)numveh[i]);

write(outdatauoutbuffer 1. 10);

temp=vehlist;
while(temp!=NULL)

0 /* scan the definition data list for vehicles of this type /
if(temp->tx=i)

/ send position, velocity, and course data 1
sprinff(outbuffer2,"%f %f %f %f %fr,

temp->x~temp->y,temp->ztemp->vel,temp->ang);
write(oudata,outbuffer2,80);

temp=temp->nexL;

Figure 4-3 Initial Data Transfer

S position and course of the missile always changes during flight, up to the point of impact

on a target. In addition, either operator can choose to exit his simulator during the

._ display loop. Since all of these parameters directly affect the display, current values

7- must be maintained. Figure 4-4 lists routine network() which handles display loop

networking.

108

... •. % " % , . . % •" % % % " % ° , ,
5- -.,' -

#icld "v h /0 define CONTIUE .0 EXI[TINGg4).0 ~

network(neworkingjnetwkestab,acuvc~vzoomed~sc-rn .nenu,vechicon.
wtndowsx,windowsyjmclL~staL)

Booleani * neworking, netwktaFx uve ,7oomed;
Obeat scmllknenul].vehiconl
Coord windowsx,windowsy;
short *mcnL.*smaL

extern Vehicle *driven;
extern Missile *msldaa
extern int tndata.outdata,incontrol ,outcontrol;

char bufferf I0l,inbuffer2[601,outbuffexr[801;
float fiying,typehit,w hichhitimslcsc missile console status;

/~HANDSHAKE*/
1sprintf(buffer,"%f*,floauacuve):

write(oucontrol~buffcr,l10)
read(incontrol,buffer, 10);
sscanf(buffer.'%f,&rniissilc-console--status);
if(misde_console-status,;==EXIMNG) (/* IF MISSILE CONSOLE HAS *

*networking=FALSE; t' SECURED, DISCONTINUE 0/
exit-networko; /0~ NETWORKING.
Onetwkestab=FAL.SE;

else ('WRITE VEHICLE POSITION, COURSE, IDENTITY/
sprinff(outbuffer," %f %f %f %f %f %r,ihven->x,diveni->ydriveni->z,

drven ->L se,(floai)(dri ven- >i),(fl oat)(diiven->t))
writc(outdata,outbuffer,80);
read(incontrol,buffer, 10); /w CHECK FOR MISSILE HIT '
sscanf(buffer,"%f',&flytng);
if((shcrt)flying ==TRUE) (I. IF MISSILE IS STILL FLYING 0/
read(indata~inbuffer2b60) /* READ ITS POSTION AND COURSE *
sscanf(inbuffkr2 ,%f %f %f *C',&(msldata->x),&(msldata->y),&(msldata->z)&msicse);
msldata->cse = 10 * (shor)(RTOD mslcse);

* msldata->grdx=(short)(msldata->x /TENTHXM):
msldata->gridz=(short)(-msdata->z/ TENTHKM);

- else /0I FIND OUT WHAT IT HIT, AND HANDLE THE CASUALTY/
read(tndatajinbuffer2,60);
sscanf(inbuffer2,"%f %f-,&typehL.&whichhll);
casualtiy(&rnetwork ing ,moncdscrnmmenu,veh icon ,windowsx,

* windowsy .ypehit~whlchhiLt&*nmcnt,&*sta):

Figure 4-4 Display Loop Data Transfer

j 109

.0 1-

The two simulators first handshake to ensure networking is still possible. Without

this check, one simulator might attempt to read or write to a socket closed by a departing

opposite console, aborting the simulator abruptly. With this check, when the opposite

,_-- console exits, the continuing console is informed. In this case, it no longer attempts

socket 1/0, but can continue operation in stand-alone mode.

If the simulator can continue networking, the driven vehicle data is sent to the

missile console. Even though more than one target can be preient in the missile flight

area, only driven vehicle data must be sent to the missile console. The driven vehicle is

the only one that can be interactively controlled, while the others maintain course and

speed. The missile console calculates a new position for each of the other vehicles based

on the course and speed received from the initial transfer. After receiving the new

vehicle information, the missile console sends a missile status flag indicating whether the

missile is still flying or whether it has hit a target. In the former case, missile position

and course data follows; in the latter case, the identity of the destroyed target is sent. If a

vehicle has been hit, the vehicle console enters routine casualty(). If the identity of the

destroyed vehicle matches that of the driven vehicle, an explosion is displayed.

Otherwise the vehicle operator sees the burning wreckage of the destroyed vehicle if it is

in the current field-of-view. In either case, the missile console then allows another

0 weapon to be launched, and the vehicle console allows another vehicle to be selected for

driving. At this point, either console can again elect to exit from the simulation without

affecting the opposite console, as before.

110

V , .
..

. !

C. LIMITATIONS

The implementation described above achieves the goal of providing out-the-

window views from both missile and vehicle consoles in a network of two simulators, but

it is limited in several respects. At present, the system allows the network connection of

only one console of each simulator type, in a dedicated link arrangement. A more

general distributed system such as that shown in Figure 4-1(c) would permit multiple

workstations to "plug-in" to a central data and network server at will, entering and

leaving the simulation at any time. Currently each simulator must perform both data

processing and graphics output. A better solution would have the computation chore of

updating vehicle and missile parameters done by the central server. Other consoles could

then access this information to present their respective out-the-window views.

Due to the networking model chosen and the requirement of each console to

update its own data, the simulators must run synchronously. A console does not proceed

-? past its request for data from the other console (a socket read) until the information it

needs becomes current. This assures the two displays remain identical with respect to

vehicle and missile location and orientation in real-time. This "lock-step" executing

nature of the simulators has the undesired affect of preventing the vehicle console

operator from changing to a different vehicle to drive while the FOG-M missile is in-

flight. Allowing this to happen would result in the missile "hanging" in mid flight until

the new vehicle selection was made. When running in stand-alone mode, the vehicle

console operator can reset the simulator or choose to drive a different vehicle at any time

during the display loop.

'pV

7e %

.I

While these limitations do exist, the system still provides a realistic though

~implementing the broader capabilities of the general distibuted simulation system of
sipeitrciesmuainevrnet Tetcnqe sdprvd h ai o

Figure 4-1(c).

..

..

4'".

,

a.'
a'112

.4'

. - ," -. Y'e ,e . . €-, ", 'e . '

V MOVING VEHICI.E SIMULA1TOR tiSIR'S GUIDE

A. INTRODU(CFION

The user-interface of the original FOG M simulator has been more fully

developed to present a user-fnendly, easy to-use system. The primary operator

interaction with the system is through a series of menus providing all of the available

user options. Help informatior appears on-screen with each of these menus. In addition,

the use of icons, color and sound gives visual and audio feedback during most user

actions.

Operation of the simulator consists of an initialization phase where the simulator

configuration is established, and the actual simulation phase where vehicles travel across

the terrain. In the first phase, the user must indicate whether the simulator is to be run in

stand-alone mode or in conjunction with the FOG-M simulator. He must also define each

vehicle that is to be present in the simulator, to include vehicle locations, course and

speed. The simulation phase allows interactive control of one of the defined vehicles and
2".1

displays the out-the-window view from this driven vehicle.

B. INITIALIZATION

After logging on to an IRIS workstation, typing

veh [connectto]

at the UNIX prompt loads the moving vehicle simulator program and begins its

execution. The executable module of the simulator must b- present in the current

113

6

directory for it to be started in this manner. The command line argument connect to is

the network host name of an IRIS workstation to be connected to should the user decide

to run the simulator in its networked mode. A default workstation is set if this argument

is not entered.

The simulator makes use of two external files that must be available to continue

normal program execution. Terrain elevation data is read from the file dted.veh found in

the path /work/DTED. If this file cannot be found, the simulator displays a red warning

screen and the message

TERRAIN ELEVATION DATA FILE NOT FOUND.
Do you wish to continue?

If continuing:
(1) the terrain will appear flat

(2) networking will be disabled
Enter 'q' to quit.

Enter 'c' to continue.
RESPONSE ==> ?

Continuing execution without terrain elevation data is possible, but in this case the entire

100 square kilometer area of terrain is drawn at the same (zero meters) elevation. This

does not affect the moving vehicle simulator except with respect to networking. The

terrain elevation database is not a shared resource: each simulator uses its own local copy

of elevation data. Since the FOG-M simulator expects a non-zero value for a vehicle's Y

(elevation) coordinate, translation of a vehicle to zero meters height in the FOG-M

display draws the vehicle incorrectly. Networking is disabled to prevent this. All other

features of the moving vehicle simulator remain present, but the view from the inside of a

* vehicle is of an uninteresting flat expanse of checkerboard colored ground.

*114

s.1

'€-¢.€ - ,,,, .- ,-,- ,,-..--- -,-,-., -. - -. , *_ -S .-.. . ,. .- .. . - . -- ,. , '-. .- , % '
"VS "** ,- .* 5. *J,* "*'.,,,,,*'* ' - , -, -'- .- --- .. ,' - -_." , - "* j ", , , , . ., _,,-,-,', '-.- - -. •. ..- ,,- - - -

If the user continues, the simulator proceeds to read file polygon.data also found

in the path /work/DTED. This file of terrain polygon colors is created if it is not found.

Colors are read (or written) with a brief countdown appearing on the screen during the

process. At this point, the opening menu and first introductory screen appears describing

the simulator and its features.

The current menu is always present in the upper right comer of the display.

Instructions that apply to the current menu appear in the lower right comer of the display.

Menu selections are made with the left mouse button by moving the cursor to the desired

menu item, then depressing and releasing the button. Mouse movements are constrained

to the menu area when menu selections are the only input possible. Menu items appear

in a yellow color if the cursor is moved off the menu; they appear red when the cursor

passes over an item, and they are highlighted in white when the selection is made. It is

possible to abort a menu selection after depressing the left mouse button simply by

moving the cursor off the selected item. Invalid selections cause the keyboard bell to

ring several times to indicate the invalid choice. This can occur if a menu item is

selected when that item is not currently available. Supplementary information describing

the invalid selection appears in the menu instructions area of the screen should this occur.

The below listed six menus provide all of the available user options for

controlling the simulator:

OPENING MENU
MAIN MENU

ADD VEHICLE MENU
DELETE VEHICLE MENU

SWITCH VEHICLES MENU
RUN MENU

115

SS
A,

,."'-A# l ,- .- . t , ." . ¢ - = ," o , " . - . - . - 4 .- . .r o ,

i-

1. Opning Menu

Menu choices available from the OPENING menu are.

NEXT PAGE
PREVIOUS PAGE

NETWORKING
QUIT PROGRAM

Three screens containing introductory textual information can be paged through from the

OPENING menu using the NEXT PAGE and PREVIOUS PAGE menu items. If

networking is desired, the NE.7WORKING menu item must be selected. The operator can

also choose the QUIT PROGRAM item to exit the simulator. This item is available in

most menus.

2. Main Menu

a. Options

The MAIN menu is entered by selecting NEXT PAGE from the

third introductory opening screen. The MAIN menu appears along with a large two-

dimensional contour map of terrain (Figure 5-1(a)). All initialization phase actions are

carried out from the MAIN menu. MAIN menu item selections result in vehicles being

defined or the actual simulation begun or exited, with choices made from the following

items:

ADD VEHICLE
DELETE VEHICLE

DEFAULTS
RUN

ZOOM IN/OUT
QUIT PROGRAM

Selecting ZOOM IN/OUT with the large contour map present on

the screen allows the user to view a small one-kilometer area of the map in larger scale.

116

*

I** ,

K'" This is done by moving the cursor to the desired map location and depressing the left

mouse button. If a zoomed-in section of the map is displayed, selecting ZOOM IN/OUT

returns the display to the large contour map. Figure 5-1(b) shows the zoomed-in contour

map.

Sclecting RUN' completes the initialization phase and begins the

simulation. RUN is discussed below in the section describing the display loop.

.;.. b. Defining Vehicles

Vehicles are defined by adding new vehicles or deleting previously

defined vehicles. Vehicles can be added by selecting the DEFAULTS menu item or the

ADD VEHICLE menu item. DEFAULTS places three vehicles of each type (TANKS,

TRUCKS, JEEPS) on the map near the middle right area of the terrain, all traveling north

at a speed of about twelve miles-per-hour. The user can select RUN to begin the

simulation with only these vehicles, or can continue to add or delete vehicles as

described below. Vehicles appear on the contour map as a small icon with an arrow

pointing in the travel direction.

Selecting DELETE VIEHICLE allows a user to remove a previously

defined vehicle from the contour map. The cursor is changed to an 'X' shape, and must

be positioned over the vehicle to be deleted. Depressing the left mouse button then

removes the vehicle from the map.

2--

O.

117

0

.%

-g",A

.1*

4.. -

4,

-4-.,

a

.4.-
4-

-4-.

-4.

~.. .~
~4~

4..

4~4

4.-

4%

' 1-'

'4

b
4.414

S
.4..

4~4~4

~

-P.-.

'p

"4%

Ii .rc ~: '''~:j I Ji 'H ~

4.

~ 4-,

4-4

4'

- -......... ~4~4*4~4 *~ 44444 - 4~44" .4*4P4~4'.4' ~ ~ ~ ~ 4 . - .. 4 p 4 ,..
--- 4.- ..4 44* ~ - , ~*4~'**~ .,..4..\

4:.7

i3A*,-)O) '1.7 1, - - u &hoiuL displays the ADD menu with the

following select- m,; alliOai

AN I) i)TR LCK• ,''-, . I ' , ANK

k 1: J N MA!N

The w!st thrce item L: ,a, l: ty'., aid the la t item returns the display to the

MAIN menu. Aftrr sccu a \CIC!€ tv ec, Lhe cursor can be moved from the menu

area to a loation on the ConWourT flap. Uhe cursor changes to an icon depicting the

selected vehicle type A vehicie's l(4cati'n- on the terrain is set by moving the cursor/icon

to the desired tocation, thcr, deprcssii;g the left mouse button. An icon image of the

vehicle appear,, on the rmap at the specifie, location. The vehicle's course is set in a

similar manner. Once the vehicle ha. ?,cen placed on the map, moving the cursor gives a

rubber-band" line from the icon to the current location of the cursor, indicating a

possible course for the vehicie. Depress ing the left mouse button sets the course to the

direction of the rubber-band line. After a vehicle's position and course has been

established, a speedometer appears in the menu area of the display to allow setting the

vehicle's speed. The speedometer is a sliding rectangle contained in a rectangular box

marked in miles-per-hour increments, with the current speed appearing below the

speedometer. [he :ursur s auntcu', pla,,ed on tt.- slider bar at an indicated speed

of zero once the 'Chi, course i' ,set, arid .n he moved left or right to change the speed.

Depressing th- ict r.-;e hutto r o t5 !he speed to the value shown below the

speedometer

.

.1'.

t.
%

-

To define several vehicles of the same type the sequence described

above

- move cursor/icon to desired map location
, move rubber-band line to desired course

I d
'

cours

- move cursor to desired speedometer speed

can be repeated without returning to the MAIN menu. Once all vehicles have been

defined, selecting RUN from the MAIN menu displays the large contour map, icons for

all defined vehicles, and the SWITCH VEHICLES menu.

3. Switch Vehicles Menu

To begin the simulation and provide the user with an out-the-window

view from a vehicle, the vehicle to be driven must be selected from those previously

defined. SWITCH VEHICLES menu options are:

ZOOM IN/OUT
QUIT PROGRAM

As described before, the ZOOM IN/OUT item allows a closer look at a srmll area of the

contour map. A vehicle is selected for driving by moving the cursor over the vehicle's

icon on the map, then depressing the left mouse button. The cursor changes shape to a

crosshair as it moves out of the menu area. Selection of a vehicle on the map begins the

display loop operation of the simulator. If networking, the vehicle simulator waits until

*.'-. missile launch occurs to enter the display loop. The options available for interactive

control of vehicles is described in the next section.

.

120

0AT

#. -" " - '" " " - : [."-.: . ' , , , " .. . ,

S% - - - - - - -

0X

C. DRIVING CONTROLS

After RUN is selected from the MAIN menu and the driven vehicle is selected,

-: the display changes to the terrain and vehicles, with a view from inside the driven vehicle

(Figure 5-2). The driving display is divided into five parts:

- The terrain viewed from the driven ,ehicle

-The vehicle control panel
-The na, igational status panel
- A scaled contour map

The oper.:;ing menu bars

The techniquCs ucd it) control the driven vehicle and displays ire discussed below.

I [~i'~e \-eicleControls

-"" lr!en vehicie' course and speed can be changed by using the dial

b 'x htc *,wr-v and s'pcd ranges are 0 to 360 degrees and -40 MPH to 60 MPH

rrspe.ely. ie s ,nsiivltv is set to provide a smooth iransition of values throughout

the range ot eaLh dial I the operator is given four means of viewing the settings that are

entered.

- Digital displays for speed in MPH and course in degrees.
- Relative motion between dnven vehicle and terrain
- An arrow on the small scale contour map for course
- Motion of the contour map arrow for speed.

While driP ing on the terrain, the driven vehicle can stall if either of the

following conditions are satisfied

- Vehicle enters within 200 meters of a terrain map boundary
- Vehicle exceeds a steepness threshold on a hill

The only way to remove the driven vehicle from a stalled condition is to back it up and

change the course away from the condition that caused it to become stalled originally.

121

-p-

Og

12

2. Driven Vehicle Views

When driving, the operator views the terrain from the inside of a vehicle.

The vie, from within a vehicle can be changed by using either one of two dials. These

two dials change the direction the operator is looking out of the vehicle and how far his

. -head is tilted up or down. The direction out of the vehicle can be changed from 0 to 360

. degrees relative to the vehicle's course and the tilt from -25 to +25 degrees with respect

to the horizon. The view out of the jeep is unrestricted in all directions except for the

posts that support the roof (Figure 5-3). The view out of the tank is limited to 82 degrees

to simulate the restricted view of the tank commander (Figure 5-4). The view out of the

truck is limited to 180 degrees because it has no back window,. All the restricted views

* are displayed to the operator as black surfaces.

3. Menu Selections

During the driving display, the operator is given two menu choices at the

upper right hand side of the screen. If not networking, the driver can switch to another

vehicle by using the left mouse button and selecting CHANGE VEHICLES, or the

number and placement of all the vehicles on the terrain can be erased by selecting QUIT.

If the system is networking, the CHANGE VEHICLES selection is not available, and

QUIT halts the program.

If the operator selects CHANGE VEHICLES, the display changes to the

large contour map with the vehicle ICONS. The menu selections are now the same ones

used during the initialization sequence just after RUN was selected:

7DX M IN / OUT
QUI-i PROGRAM

, 123

-p..e

k
-

IF-1W

02

0I

oS

0 .0 ,

- - t - - - - -

4'
a,--

0

a'

.1*

6

5,-

6

ai

I 25

6

SW

%-. The viewing vehicle can be changed by moving the cursor ocr any vehicle ICON and

pushing the left mouse button. The driving display then appear- with the view from the

newly selected vehicle.

If QUIT is selected, the display changes to the large contour map without

any vehicle ICONS, with menu selections identical to what is presented prior to selecting

RUN. Now the vehicles can be laid down as if just starting the program.

To ,top the program, QUIT PROGRAM is selected. Typing control C

also exits the program, saving the last frame displayed, which can be saved in a file if

desired.

4. Target Destruction

When the vehicle system is networking with the missile system, at

sometime a vehicle will be hit by a missile. If a non-driven vehicle is hit, an explosion

appears on the screen at the same location of the hit vehicle. The large contour map is

then displayed with a red X at the location of the destroyed vehicle. If the driven vehicle

is hit by the missile, the screen changes into a series of flashes and then the large contour

map is displayed. The driving display is restarted by selecting a vehicle that has not been

destroyed.

126

I

" - , A~

%

i

VI. CONCLUSIONS AND RECOMMENDAVIONS

A. LIMITATIONS

The Moving Vehicle Simulator is limited in two general respects. The real-time

simulation display rate cannot be improved beyond the capacit% of the present hardware

. configuration. In addition, the networking implementation is simple and does not provide

the general distributed system described in Chapter IV.

Due to hardware performance, several specific limitations are present in the

Moving Vehicle Simulator with respect to display realism First, vehicle objects

displayed are constructed using special drawing techniques versus sorting routines for

drawing order. This is done to maintain a fast frame rate required for a real-time display.

Once the design of special hardware provides faster Z buffer and polygon fill rates, the

vehicle objects can then be constructed using a sorted drawing order and made with more

. polygons for added detail.

Second, when a vehicle travels in a northerly direction over a hill made up of the

two triangles of a single grid square, distortion occurs as it passes over the crest of the
0

hill (Figure 6-1). This is due to a drawing order of lower triangle, then upper triangle,

and finally vehicle. The vehicle draws over the upper trianigle when it should be

0. obscured by this triangle. This drawing order can be corrected by assigning each vehicle

to either the upper or lower triangle of a grid square. Now the vehicles are sorted based

on which section of each grid square they are in, and drawn with that section of the grid

square. This is not implemented in this study based on real-time performance

127

[J

*Figure 6- 1 Display Scene

constraints A modiification of both update vehicle grid) and displaY rterrainu would

have to e made to decide in which order to draw the grid -,quare triangles and the

vehicles in this case. This is a time intensive computation whic h lowers the frame rate to

an unacceptable level

Third, the terrain modeled in this study' has no cultural features, such as lakes,

trees and bushes. All of the terrain polygons are shaded to givc a checkerboard display.

The checkerboard effect is not realistic. However it gives a visual effect of motion and

depth when viewing or travelling on the terrain. The integration of cultural features

using texture maps is under study at the Naval Postgraduate School. Presently, to include

the simplest texture map, would take too) long a time period for a real-time display.

128

,T-..

%,!::!:

..... -.

Fourth, the).chicle object's are not light-shaded for all orientations on the terrain

map. Each vehicle is light-shaded during program initialization for a northern light

source and an eastern vehicle course No matter what course !he vehicle travels on the

terrain, it is always shaded as if the stin .s on it-, left side. This can be corrected by

calling the light shading fucction fir each p(,lygrn of the moving vehicle, peri(oically

throughout the program's execution. Since each call to the light orient) function takes

() 1 millisec, the refresh rate of the display would be unacceptable.

Fifth, a vehicle can drive through another vehicle causing a distorted display.

The implementation of an algorithm that would decide when two vehicles occupied the

same space on the terrain, would require calculating the distance between all vehicles

each frame. If a collision is imminent, one of the vehicles could be turned away or

stopped. The calculation of the distance between all the vehicles each frame can not be

implemented in a time frame to provide a fast frame rate.

The Moving Vehicle Simulator can be operated in networked mxle with the

FO(;-M Simulator, but only one console of each type can be included in this network. In

addition, the use of blocking socket 1/0 as described in Chapter IV removes some of the

capabilities of the stand-alone mode of the Moving Vehicle Simulator. The vehicle

operator cannot decide to drive a different vehicle while the FOG-M missile is in flight,

and he cannot reset the Moving Vehicle Simulator at any time during the display loop.

Both of these features are available in the stand-alone mode of operation.

129

A _1 -1

StI

B. FUTURE RESEARCH

Hardware improvements will allow more cultural features to be incorporated to

improve display realism without sacrificing the display update rate. Two areas could be

addressed first that would lend much more realism to the display at minimal cost. A

dynamic lighting model could provide such features as fog or dust or a changing set of

weather conditions, and reducing the grid square dimensions would produce smoother

looking terrain. More costly improvements could utilize Gouraud shading for polygon

coloring and Z-Buffering for hidden surface removal. Current research at the Navad

Postgraduate School is investigating the use of texture mapping in real-time displays, and

the use of a LISP machine to provide path planning for vehicles in the display. Off-

* loading non-graphics processing to other machines, such as path planning and updating

the moving platform position, speed and other attributes, would serve to increase both the

simulator frame rate and the "look-and-feel" realism of driving across terrain. In

addition, research is being conducted on implementing a network data server that would

allow a separate node to handle all non-graphics processing.

130

. a., ,. ,,, , -.i'd 't. 5 , . ..
% ZI N:P'I

LIST OF RI'FFRFNCES

III Smith, D. B and Strevle, D (G.. ".An Inexpensive Real-Time Interactive Three-

Dimensional Flight Simulation System," M. S. Thesis, Naval Postgraduate School,

Monterey. California, June 1987.

[21 Htearn, D. and Baker, P. M., Computer Graphics (Prentice Hall, Englewo d, New

Jerse,,, 1986

131 Fuchs, 1H., Abram, G. D., and Grant, E. D., ''Near Real-Time Shadcd Display of

Rigid Objects,' Computer Graphics 17, (July 1983).

(41 IRIS Users Manual 1ersin 2.0 (Silicon Graphics, Inc., Mountain View,

Cali!ornia, 1986).

151 Leffler. S. J., Fabry, R. S., Joy. W. N., Lapsley, P., Miller, S., and Torek, C., "An

Advanced 4.3BSD Interprocess Communication Tutonial," UNIX Programmer's

Supplemntanrv Documents 1, (1986).

'.

'.4

I N- I

131
'% %%

,S,

Distribution List for Dr. Michael J. Zyda

%Defense Technical Information Center,
Cameron Station,
Alexandria, VA 22314 2 copies

Library, Code 0142
Naval Postgraduate School,
Monterey, CA 93943 2 copies

,. . Center for Naval Analyses,
4401 Ford Avenue
Alexandria, VA 22302-0268 1 copy

Director of Research Administration,
Code 012,
Naval Postgraduate School,
Monterey, CA 93943 1 copy

Dr. Michael J. Zyda
Naval Postgraduate School,
Code 52, Dept. of Computer Science
Monterey, California 93943-5100 200 copies

Mr. Bill West,

--. HQ, USACDEC,
Attention: ATEC-D,
Fort Ord, California 93941 1 copy

John Maynard,
Naval Ocean Systems Center,
Code 402,
San Diego, California 92152 1 copy

El Wells,
Naval Ocean Systems Center,
Code 443,
San Diego, California 92152 1 copy

Roger Casey,
Naval Ocean Systems Center,
Code 84,
San Diego, California 92152 1 copy

*Dr. Al Zied,
Naval Ocean Systems Center,
Code 433,
San Diego, California 92152 1 copy

0".

DTIF
S%

N1 88% 1
S S S S4-4 50Y.

"U, *iU a-M. ,

